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Abstract

After 1980, larger US cities experienced substantially faster wage growth than

smaller ones. We show that this urban bias mainly reflected wage growth at large

Business Services firms. These firms stand out through their high per-worker

expenditure on information technology and disproportionate presence in big cities.

We introduce a spatial model of investment-specific technical change that can

rationalize these patterns. Using the model as an accounting framework, we find

that the observed decline in the investment price of information technology capital

explains most urban-biased growth by raising the profits of large Business Services

firms in big cities.
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David Autor, Costas Arkolakis, Adrien Bilal, Gideon Bornstein, Laura Castillo-Martinez, Jonathan Dingel,
Pierre-Olivier Gourinchas, Gordon Hanson, J. Bradford Jensen, Tom Kemeny, Paolo Martellini, Christian
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INTRODUCTION

Since 1980, US wage growth has been faster in cities with higher population density.
The left panel of Figure 1 shows average wages across US commuting zones grouped
into deciles of increasing population density. In 1980, the average worker in the top
decile, which consists of New York and Chicago, earned 32% more than the average
worker in the bottom decile. By 2015, the gap had risen to 71%.

Urban-biased growth is related to a number of economic and societal challenges the US
has faced in recent decades. It has occurred alongside skyrocketing house prices in urban
centers (Gyourko, Mayer, and Sinai, 2013), increasing political polarization between big
cities and rural areas (Scala and Johnson, 2017), and rising income inequality (Piketty
and Saez, 2003). However, its origins remain largely unexplained.

This paper uses new data and economic theory to provide an explanation for urban-
biased growth. We empirically document that urban-biased growth has been driven
almost entirely by large establishments in the Business Services sector (NAICS-5) that
invested heavily in information technology (IT). By hosting these establishments, high-
density cities have benefited more than others from the substantial decline in the price
of IT capital. We then integrate investment-specific technical change and a firm-size-
capital complementarity into a spatial model that can flexibly account for other sources
of growth. We use the model for a growth accounting exercise, and find that the
observed decline in IT capital prices alone explains most urban-biased growth since
1980.

We begin by showing that Business Services have been responsible for virtually all
urban-biased growth since 1980. The right panel of Figure 1 shows average wages
across commuting zones for the Business Services sector and the rest of the economy. In
1980, Business Services workers in cities with the highest population densities earned, on
average, 40% more than workers in cities with the lowest population densities. By 2015,
they made 117% more. Meanwhile, the relationship between wages and population
density has changed little in other sectors.

Using microdata on the universe of US establishments, we show that more than two-
thirds of the urban-biased growth within the Business Services sector is due to large
establishments with more than 100 employees. The outsized role of these establishments
primarily reflects that wage growth was dramatically faster at large establishments in
big cities than elsewhere, but also, to a lesser extent, that large establishments account
for a larger share of Business Services employment in high-density cities.

Next, we show that Business Services establishments in high-density cities were among
the largest investors in IT capital, making the dramatic price decline for IT capital after
1980 a potential driver of urban-biased growth. This finding reflects a combination of

1



FIGURE 1: THE US WAGE-DENSITY GRADIENT IN 1980 AND 2015
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Notes: This figure shows average wages across commuting zones (Tolbert and Sizer, 1996) sorted into
deciles of increasing population density. Each decile accounts for one-tenth of the US population in
1980. The average commuting zone in decile 1 has a population density of 10 people/mi2 and in decile
10 of 2300 people/mi2. The underlying data come from the US Census Bureau’s Longitudinal Business
Database and cover all US private, non-farm employer establishments. We compute average wages
as average payroll per worker by aggregating establishment payroll numbers and employment counts
across all establishments in a commuting zone and sector.

two empirical regularities in the Business Services sector that are important for our
theory. First, the higher a city’s population density, the larger the average Business
Services establishment. Second, the larger a firm’s total employment, the higher its
per-worker expenditure on IT capital.

We also show explicitly that urban-biased growth is a sectoral phenomenon not specific
to an educational group, in contrast with the focus of recent literature. In particular,
we show the wages of college and non-college-educated workers in Business Services
have experienced urban-biased wage growth. In contrast, the wages of college- and
non-college-educated workers outside the Business Services sector have not grown any
faster in high-density locations than elsewhere.1

We then introduce a dynamic spatial model of investment-specific technical change.
The model shows how a decline in the national investment price of IT capital can lead
to faster wage growth in certain locations and sectors in equilibrium. The model also
serves as a growth accounting framework to measure the contribution of the observed
decline in IT capital prices to urban-biased growth while flexibly accounting for other
sources of growth.

1Most college-educated workers in the US economy work outside the Business Services sector. In
2015, only 28% of all workers with a college degree worked in the Business Services sector.
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In a general version of our model, we first show that an intuitive exposure statistic
measures the local wage response to a decline in the IT investment price in general
equilibrium. In particular, the exposure of a location-sector pair is captured by the ratio
of total capital to total labor payments across all its firms. The more important capital is
in local costs, the more profits of local firms rise as the capital input becomes cheaper.
The less important labor is in local costs, the more local wages have to increase to offset
firms’ profitability increases from cheaper capital.

A declining IT price then leads to urban-biased growth if the exposure statistic increases
with population density in the cross-section of locations. We show explicitly that the
spatial variation in exposure depends on two competing channels. First, a neoclassical
channel captures the classic price and substitution effects in firms’ input choices in
response to higher wages in higher density locations. All else equal, if capital and labor
are complements, the price effect dominates, lowering high-density cities’ capital price
exposure. Second, a novel scale channel reflects changes in capital usage driven by firm
size differences across locations. Since firms in high-density cities are larger, and larger
firms produce in more capital-intensive ways, the scale channel increases high-density
cities’ capital price exposure. Depending on the balance of these channels, changes in IT
investment prices can lead to rural- or urban-biased growth, or lead to no spatial bias in
growth at all.

The scale channel is active as long as firm size influences factor input choices and firm
size varies across locations and sectors in equilibrium. We introduce a non-homotheticity
into firms’ production technologies that allows relative marginal products of factors
to vary with firm scale, given factor prices. We also show that firms in high-density
locations are larger as long as firms’ entry costs require payments to a scarce local factor,
such as labor or land.

Ultimately, whether the scale channel dominates the neoclassical channel is a quantita-
tive question, and may vary across sectors. To quantify the scale channel, we estimate
the non-homotheticity using micro-data on capital investments across the firm size
distribution, and the land share in entry costs from the correlation of average firm size
and population density in the cross-section of locations. To quantify the neoclassical
channel, we choose firms’ elasticity of substitution between capital and labor to ensure
our model matches canonical estimate for the corresponding aggregate elasticity. Our
estimates imply that the exposure to IT price changes in the Business Services sector
is sharply increasing with population density in the cross-section of locations, while
exposure in other sectors is generally lower and less urban-biased.

Given the model’s parameters, we infer a set of location-, sector-, and factor-specific
productivity and amenity terms as structural residuals to account for the data on
wages and employment counts across all US commuting zones between 1980 and 2015.
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We choose the productivity of IT capital production to match the time series of the
investment price of IT capital. As a result, our model can account for all the wage
and employment variation in the data; some explicitly due to our mechanism of local
exposure interacting with changes in IT prices, and some implicitly through changes in
productivity and amenity residuals.

We use the model for a growth accounting exercise that decomposes the observed urban-
biased growth into changes due to our mechanism, and changes due to movement in
the ”residual” productivity and amenity terms. To do so, we hold all productivity and
amenity terms fixed at their 1980 levels, and then vary the investment price of IT capital
as in the data.

We find that the observed decline in IT prices alone accounts for the vast majority of
urban-biased wage growth in the data. Moreover, as in the data, most urban-biased
growth originates in the Business Services sector because of our finding that exposure
to IT prices changes is low and varies little across locations in other sectors. The model
also replicates the compositional changes seen in the data: the IT price decline causes a
substantial and urban-biased skill-deepening of the Business Services sector.

The scale channel is central in generating this response to the IT price decline. When we
make firms production functions homothetic and re-calibrate all structural residuals,
the observed IT price decline generates virtually no urban-biased growth. We conclude
that the dramatic decline in the investment price of IT capital since 1980 constituted not
just a skill- but also an urban-biased form of technical change.

Literature Review. Our paper makes both empirical and theoretical contributions.
The first empirical contribution is to document the steepening of the US wage-density
gradient that we refer to as urban-biased growth. Related papers have studied wage
convergence across US cities, that is, the relationship between initial wage levels and
subsequent wage growth (see Berry and Glaeser, 2005; Moretti, 2012; Ganong and Shoag,
2017; Giannone, 2022). Others have studied the growth of the relative wages of college
and non-college-educated workers across cities (Beaudry, Doms, and Lewis, 2010; Baum-
Snow and Pavan, 2013; Eckert, 2019; Rubinton, 2019; Moretti, 2013; Diamond, 2016).
Finally, a growing literature studies how within-location inequality varies with city
size or affects city neighborhoods (Davis and Dingel, 2020; Eeckhout, Hedtrich, and
Pinheiro, 2021; Couture and Handbury, 2020; Almagro and Domı́nguez-Iino, 2022; Fogli,
Guerrieri, Ponder, and Prato, 2023).

Our paper is also the first to document the role of large technology, professional service,
and financial firms for regional growth in the US economy using microdata. Our sectoral
perspective revises the view that big cities’ recent success reflects broad-based wage
growth biased toward more educated workers.2 Locating the urban-biased growth

2For example, the average wages of medical doctors have grown in a remarkably balanced way across
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phenomenon in a single sector and establishment type considerably narrows the set of
potential drivers for urban-biased growth, allowing us to provide a concrete economic
mechanism to explain it.

As a final empirical contribution, our paper shows that the Business Services sector is
the most intensive user of IT capital in the economy, and provides direct cross-sectional
evidence that IT capital expenditures in the sector are increasing in firm size and
commuting zone population density. A large set of papers studies the role of a decline
in the price of IT (or more general equipment) capital in generating skill-biased wage
growth in the US economy (Krusell, Ohanian, Rı́os-Rull, and Violante, 2000; Krueger,
1993; Lashkari, Bauer, and Boussard, 2024); our paper instead relates these price changes
to the urban-biased growth in recent decades.3

On the theoretical side, we are the first to build investment-specific technical change into
a spatial equilibrium model to study how aggregate changes in the investment price
of capital affect wages and employment across locations. We add to a small number
of papers that study capital investment in a spatial setting (Ravikumar, Santacreu,
and Sposi, 2019; Anderson, Larch, and Yotov, 2020; Kleinman, Liu, and Redding,
2023; Bilal and Rossi-Hansberg, 2023), and more broadly technology adoption across
space (Desmet and Rossi-Hansberg, 2014; Desmet, Nagy, and Rossi-Hansberg, 2018;
Martellini, 2022; Nagy, 2023). Since this paper was first circulated, several papers have
studied wage growth at headquarters establishments in big cities as a result of declining
communication costs, and linked this to increases in aggregate inequality and efficiency
(Kleinman, 2022, Jiang, 2023). We show explicitly that such establishments account only
for a residual fraction of urban-biased growth because they contribute only a small
share of overall Business Services employment.4

Technically, our paper embeds a non-homothetic CES production function (Sato, 1977)
into the workhorse quantitative spatial model (Allen and Arkolakis, 2014; Redding,
2016; Redding and Rossi-Hansberg, 2017), and shows how the interaction of the non-
homotheticity with spatial firm-size patterns gives rise to local exposure differences to
investment-specific technical change. Comin, Lashkari, and Mestieri (2021) were the
first to build a non-homothetic CES function into a structural macro model, using it as a
utility aggregator in the study of structural change. More recently, Lashkari et al. (2024)
and Trottner (2019) employed the aggregator as a production function. Our paper is

space in the same period. The same is true more generally for highly-educated workers not working in
the NAICS-5 sector.

3Baum-Snow and Pavan (2013) is the only paper that studies an explicit capital-skill complementarity
across locations by estimating local production functions similar to that in Krusell et al. (2000). However,
they study how equipment capital price changes led to faster growth of the manufacturing college wage
premium in big cities. Below, we show explicitly that the manufacturing sector contributed negatively to
urban-biased growth.

4Headquarter services (NAICS Code 55) accounted for 2.4% of aggregate employment in 2015. The
Business Services sector accounted for 26%.
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particularly related to Lashkari et al. (2024), who provide direct evidence that IT capital
exhibits a complementarity with firm size, which a non-homothetic CES production
function captures well.

1. URBAN-BIASED GROWTH IN THE DATA

In this section, we document the urban-biased growth of the US economy between 1980
and 2015 and decompose it into the contributions of different sectors, firms, and worker
types.

1.1 Main Data Sources

Our primary data source is the Longitudinal Business Database (LBD) drawn from
the US Census Business Register, a database constructed from the administrative tax
records of all private, non-farm employer establishments in the US. The LBD provides
annual information on the total payroll and employment of each establishment between
1975 and 2015. Central to our analysis, an establishment is a single physical location where
business is conducted, services are provided, or industrial operations are carried out.
The LBD contains detailed information on the sector and location of each establishment.

Using its location identifier, we map each establishment to one of the 722 commuting
zones (Tolbert and Sizer, 1996) covering the entirety of the continental US. We aggre-
gate our data to 1-digit ”NAICS” sectors designed to capture the principal functional
differences between groups of industries.5 We compute average wages in the LBD as
payroll per worker and adjust all values for inflation to 2015 dollars using the Bureau of
Economic Analysis (BEA) Personal Consumption Expenditures Price Index (PCE).

1.2 Documenting Urban-Biased Growth

We begin by documenting the urban-biased growth of the US economy between 1980
and 2015. Based on 1980 data, we group commuting zones into deciles of increasing
population density, so that each decile accounts for approximately 10% of US employ-
ment. For most of our analysis below, we compare the “low-density” commuting zones
with population density below the median with the ”high-density” commuting zones
above it.

Figure 2 shows the growth in average wages between 1980 and 2015 for each commuting
zone decile. Average wages in the top decile of commuting zones, which includes New
York and Chicago, grew twice as fast as average wages in the bottom decile. Average
wages grew 51% among the above-median density commuting zones, compared to only

5NAICS stands for North American Industry Classification System. Since the LBD data before 1997
uses the Standard Industrial Classification (SIC) system, we use the SIC-NAICS concordance from Fort
and Klimek (2016) to create consistent NAICS industry codes over time.
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FIGURE 2: THE URBAN BIAS IN US WAGE GROWTH, 1980-2015
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Notes: This figure shows wage growth between 1980 and 2015 across commuting zones (Tolbert and
Sizer, 1996) sorted into deciles of increasing population density. Each decile accounts for one-tenth of the
US population in 1980. The underlying data come from the US Census Bureau’s Longitudinal Business
Database and cover all US private, non-farm employer establishments. We compute average wages
as average payroll per worker by aggregating establishment payroll numbers and employment counts
across all establishments in a commuting zone and sector. All values are adjusted for inflation to 2015
dollars using the BEA PCE price index.

35% in the below-median group. In the Online Appendix, we show the urban-biased
wage growth in Figure 2 represents a doubling of the wage-density gradient in the
cross-section of commuting zones.

Figure 2 looks very similar when we order commuting zones by their population size
instead.6 We focus on population density since population normalized by area has a
more immediate economic interpretation, as evidenced by an extensive urban literature
on the productive benefits and congestion costs associated with urban density (Ahlfeldt
and Pietrostefani, 2019).

A set of additional empirical facts about urban-biased growth narrow the space of
potential explanations. The urban-biased growth depicted in Figure 2 is not a unique
feature of the LBD, but holds across all major US labor market datasets, including the
Quarterly Census of Employment and Wages (QCEW) and the US Decennial Census.
Furthermore, the European data shows similar trends, pointing to the need for an
explanation not specific to the US context. Historically, we find almost no urban-
biased growth between 1950 and 1980; the strong urban bias after 1980 presents a clear
structural break.7

6We present the corresponding Figure in the Online Appendix.
7In the Online Appendix, we present versions of Figure 2 using alternative US datasets, European

data, and historical US data.
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While the urban-biased growth in Figure 2 has received minimal attention, some related
papers study other aspects of wage growth across cities. Berry and Glaeser (2005) and
Giannone (2022) document ”the end of wage convergence” across US cities since 1980,
that is, changes in the relationship between initial wage levels and subsequent wage
growth. The convergence fact and the urban-biased growth fact are separate: when
we order commuting zones based on initial wages instead of population density, wage
growth is flat across deciles, in sharp contrast with the increasing wage growth pattern
in Figure 2.8 Other related papers have studied the urban bias in the growth of the
relative wages of college- and non-college-educated workers (”college-wage premium”),
which is separate from our focus on growth in the level of wages (Beaudry et al., 2010;
Baum-Snow and Pavan, 2013; Diamond, 2016; Eckert, 2019). A final set of papers studies
how within-city wage polarization varies with city size (Davis, Mengus, and Michalski,
2020; Eeckhout et al., 2021).

1.3 Accounting for Urban-Biased Growth

In this section, we use the LBD data to shed light on the role of sectors, establishments,
and IT capital in giving rise to urban-biased growth in Figure 2. We organize our
findings into three facts.

Fact 1: The Business Services sector accounts for almost all urban-biased growth.

We first introduce a decomposition to compute the share of urban-biased growth ac-
counted for by each sector. Denote a location ℓ’s average wage in sector s by wℓs and the
sector s share in local employment by µℓs. The difference in the growth rate of average
wages between period t and t + 1 across two locations ℓ and ℓ′ can then be decomposed
as follows:

(1) gℓ′ − gℓ = ∑
s
(δℓ′s − δℓs) where δℓs :=

µℓst+1wℓst+1 − µℓstwℓst
w̄ℓt

where w̄ℓt = ∑s µℓstwℓst and gℓ = (w̄ℓt+1 − w̄ℓt)/wℓt. The term δℓs measures the positive
or negative contribution of sector s to wage growth in location ℓ. Note that δℓs captures
changes in wages and employment shares: a sector can contribute to local wage growth
by generating wage increases or by growing its employment faster than other sectors.

We apply the decomposition in equation (1) to study the contribution of each 1-digit
NAICS sector to the wage-growth difference between commuting zones above- and
below-median density (cf. Figure 2). In particular, we use equation (1) to define the

8Figure OA.2 in the Online Appendix replicates Figure 2 with commuting zones ordered by their initial
wage instead of their initial density. The stark difference in the ordering reflects that many low-density
cities in the US have high wages, and some high-density cities have low wages.
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FIGURE 3: THE SECTORAL ORIGINS OF URBAN-BIASED GROWTH
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Notes: The figure decomposes the difference in 1980-2015 wage growth between commuting zones with
above-median and below-median densities in 1980 into the contributions of each NAICS-1 sector. The
blue bars show the share of the wage growth difference accounted for by each sector (cf. equation
(2)). The red bars decompose the blue bars into the separate contributions of within-industry wage
growth, across industry relocation, and a covariance term (cf. equation (3)). The green bars decompose
the blue bars into a component due to wage growth differences if all commuting zones had the same
sectoral employment shares and a residual component (cf. equation (4)). The underlying data come from
the US Census Bureau’s Longitudinal Business Database and cover all US private, non-farm employer
establishments. We classify above-median density commuting zones as the highest density commuting
zones jointly accounting for 50% of 1980 employment. All values are adjusted for inflation to 2015 dollars
using the BEA PCE price index.

share of urban-biased growth accounted for by sector s, Ξs:

(2) Ξs :=
δℓ′s − δℓs
gℓ′ − gℓ

,

where ℓ′ refers to the above-median commuting zone group and ℓ to the below-median
commuting zone group.

The blue bars in Figure 3 show the share of urban-biased growth accounted for by
each sector. The decomposition reveals that the Business Services sector (NAICS-5)
accounted for almost all urban-biased wage growth.9 Growth in all other sectors
was remarkably balanced across high- and low-density commuting zones. The only
sector that contributed negatively to urban-biased growth is Manufacturing (NAICS-3).
Since manufacturing jobs were high-paying on average in 1980, their disproportionate
disappearance from high-density cities contributed negatively to these cities’ local wage

9The NAICS-5 sector accounted for 20% of national employment in 1980, 66% of which were in
high-population-density commuting zones. These numbers had changed to 26% and 61% by 2015.
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growth.

The Business Services sector comprises several industries often associated with high-
population-density locations: Professional Services, Finance and Insurance, Manage-
ment of Companies, Information, Administrative Services, and Real Estate Services.
All 2-digit sub-industries of the Business Services sector experienced substantial urban-
biased growth.10 In order of decreasing contribution, the industries contributing most
to the sector’s urban-biased growth are Professional Services, Finance, and Informa-
tion. Wage growth in the ”Management of Companies” sub-industry, which mainly
captures large companies’ headquarters establishments, has been strongly urban-biased.
However, it accounts for little urban-biased growth simply because the sector is small
relative to other subindustries of the Business Services sector.11

A sector’s contribution to urban-biased growth can reflect wage growth or changes in
its employment share. To differentiate these two channels, we further decompose the
contribution of each sector to local growth in equation (1):

(3) δℓs =

Decomposition 2︷ ︸︸ ︷
µℓst∆wℓst

w̄ℓt︸ ︷︷ ︸
∆ Wage

+
wℓst∆µℓst

w̄ℓt︸ ︷︷ ︸
∆ Share

+
∆µsℓt∆wℓst

w̄ℓt︸ ︷︷ ︸
Covariance

.

Equation (3) divides the contribution of each sector into parts due to wage growth
holding employment shares fixed, employment share changes holding wages fixed, and
a covariance term. The red bars in Figure 3 use equation (3) to decompose a sector’s
contribution to urban-biased growth into these components. Urban-biased growth of
the Business Services sector mainly reflects urban-biased wage growth within the sector;
reallocation of employment across sectors plays only a minor role.

The wage-growth term in equation (3) combines cross-location differences in initial
sectoral employment shares (”exposure”) with cross-location differences in wage growth.
To isolate cross-location differences in wage growth from differences in exposure, we
extract a component from the wage term in equation (3) that holds exposure constant

10Figure OA.7 in the Online Appendix shows the share of urban-biased growth accounted for by each
2-digit NAICS industry using the decomposition from this section.

11Since our paper first appeared, new papers have provided evidence that headquarters establishments
have used advances in IT to change how they control their associated production sites. Kleinman (2022)
show how headquarters and the growth of their associated establishments contributed to aggregate wage
inequality in the US economy; Jiang (2023) studied how the expansion of headquarters’ establishment
networks affected the aggregate efficiency of the economy.
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across locations:

(4) δℓst =

Decomposition 3︷ ︸︸ ︷
µst∆wℓst

w̄ℓt︸ ︷︷ ︸
∆ Wage, Aggregate Share

+ ξℓst︸︷︷︸
Residual

,

where µst is the employment share of sector s in the aggregate economy. The green bars
in Figure 3 use equation (4) to further decompose the contribution to each sector’s urban-
biased growth. We find that wage-growth differences within the Business Services sector
can account for almost 50% of urban-biased growth, even after controlling for exposure
differences across locations.

Lastly, we note the Business Services sector has also experienced strong aggregate
growth between 1980 and 2015. During that period, aggregate Business Services em-
ployment expanded faster than any other 1-digit NAICS sector, and aggregate wage
growth was twice as fast as that of the second fastest-growing sector.12

In summary, urban-biased growth mainly occurred in Business Services, and reflected
large within-sector differences in wage growth across locations.

Fact 2: Large establishments drive urban-biased growth in Business Services.

To understand the role of establishment size in contributing to urban-biased growth,
we split all establishments into ”large” (at least 100 employees) and ”small” (less than
100 employees), where we chose the cutoff to ensure each group accounted for roughly
50% of US employment in 1980.

We use equation (1) to decompose local wage growth into the contribution of large
and small establishments within each sector. The blue bars in Figure 4 show large
Business Services establishments account for almost 70% of urban-biased growth. The
blue bars are additive, so the large and small establishment components within the
Business Services sector add to a sector’s total contribution to urban-biased growth. By
construction, large and small establishments account for about 50% of total employment,
so the outsized contribution of large establishments to urban-biased growth does not
reflect that they account for more aggregate employment.

The red bars in Figure 4 decompose each establishment type’s contribution into wage
growth versus employment-share growth. Most of the contribution of large Business
Services establishments reflects wage growth rather than an increase in their local em-
ployment shares. The negative share component of other sectors’ large establishments
reflects the disproportionate decline of large, high-paying manufacturing establishments

12Figure OA.12 in the Online Appendix shows aggregate wage and employment growth by sector.
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FIGURE 4: ESTABLISHMENT SIZE AND URBAN-BIASED GROWTH
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Notes: The figure decomposes the difference in 1980-2015 wage growth between commuting zones
with above-median and below-median densities in 1980 into the contributions of large and small es-
tablishments within each NAICS-1 sector. The blue bars show the share of the wage growth difference
accounted for by each sector and establishment type (cf. equation (2)). The red bars decompose the blue
bars into the separate contributions of within-industry wage growth, across industry relocation, and a
covariance term (cf. equation (3)). The green bars decompose the blue bars into a component due to
wage growth differences if all commuting zones had the same sectoral employment shares and a residual
component (cf. equation (4)). The underlying data come from the US Census Bureau’s Longitudinal Busi-
ness Database and cover all US private, non-farm employer establishments. We classify above-median
density commuting zones as the highest density commuting zones jointly accounting for 50% of 1980
employment. We classify large establishments as the largest establishments jointly accounting for 50%
of 1980 employment, leading to an employment cutoff for large firms of 108 employees. All values are
adjusted for inflation to 2015 dollars using the BEA PCE price index.

in the most densely-populated cities.

Next, we study the importance of exposure differences for the large contribution of
the wage growth component to urban-biased growth. We again isolate a component
that interacts local wage growth at large Business Services establishments with the
employment share of such establishments in the aggregate economy (analogously to
Figure 3 above). The dark green bar in Figure 4 shows that the wage changes alone,
given identical exposure, accounts for the vast majority of the contribution of large
Business Services establishments.

Our finding that differential wage growth at large establishments is the central driver of
urban-biased growth reflects two empirical regularities about employment at large Busi-
ness Services establishments across commuting zones. First, while large establishments
account for a larger share of local employment in high-density cities than small estab-
lishments, these employment share differences are minor relative to the vast differences
in wage growth at large establishments across commuting zones. This finding helps
understand why wage growth differences still account for a lot of urban-biased growth
even when sectoral employment shares are set to their national levels in all locations,
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as evidenced by the the dark green bars in Figure 4. Second, large Business Services
establishments’ employment shares across commuting zones have mostly stayed the
same between 1980 and 2015; their employment shares in the highest density decile
even fell slightly, explaining why the ”share change” component in Figure 4 is mildly
negative.13

Each establishment in our data either belongs to or constitutes a firm, and some firms
control several establishments. The LBD data reports the firm that controls each es-
tablishment. In the Online Appendix, we show our findings change little when we
classify establishments into large and small based on the size of the firm that owns them.
The establishments of large Business Services firms tend to be large themselves. As a
result, our theory focuses on establishments, and has little to say about their ownership
structure.

In summary, large establishments are essential in accounting for the urban-biased
growth of the US economy. Faster wage growth at large Business Services establishments
in high-density cities explains most urban-biased growth.

Fact 3: IT investment is concentrated in large, urban Business Services firms.

Facts 1 and 2 showed wage growth at large establishments in the Professional Services,
Finance, and Information industries accounted for most of the urban-biased growth
in the data. These industries are often associated with the intensive use of IT, such as
computers and software. In this section, we provide evidence that investments in IT
capital occurred predominantly in high-density commuting zones and at large Business
Services establishments, making the adoption of IT capital a candidate explanation for
urban-biased growth.

We use the BEA Fixed-Asset Tables as source of information on capital investments
across sectors. In the data, we define IT capital as all capital types falling into one of
three subgroups: custom software, pre-packaged software, and hardware. We deflate
the value of all investments by asset-specific deflators provided by the BEA.14

Figure 5 shows IT investments per worker in 1980 and 2015 for each NAICS-1 sector
ordered by their contribution to urban-biased growth. In 1980, the Business Services
sector already made more IT investments per worker than any other sector. By 2015,
the Business Services sector invested almost three times more than any other sector.
Importantly, the Business Services sector is not particularly capital-intensive overall
and does not stand out regarding per-worker investments in non-IT capital types.15

13Figure OA.9 in the Online Appendix shows wages and employment shares at large and small
establishments across commuting zones.

14See the Online Appendix for more details.
15The Online Appendix shows each sector’s capital investments in non-IT capital.

13



FIGURE 5: INFORMATION TECHNOLOGY INVESTMENTS PER WORKER ACROSS SECTORS
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Notes: The figure shows investment per worker for different information technology assets across 1-digit
NAICS sectors in 1980 and 2015. Data on capital investments in each sector are from the Bureau of
Economic Activity. Data on employment in each sector are from the Quarterly Census of Employment
and Wages. Proprietary software refers to BEA codes ENS2 and ENS3; pre-packaged software refers to
ENS1; hardware to EP1A-EP31. Sectors appear in order of their contribution to urban-biased growth. All
values are adjusted using the BEA’s asset-specific investment-price deflators to 2015 dollars.

Next, we provide evidence that IT technology investments occurred predominantly in
large firms in high-density commuting zones in the Business Services sector. We use
information from the 2013 Information and Communication Technology supplement
to the US Census’ Annual Capital Expenditure Survey (ACES) to disaggregate each
sector’s IT expenditures across commuting zones and production establishments.16 The
ACES reports the capitalized and non-capitalized expenditures on various IT categories.
A drawback of the ACES data is that the survey reports expenditure at the firm rather
than the establishment level. Firms with multiple establishments may have no unique
sector or commuting zone. We merge the ACES data with the LBD data to observe
the location, sector, payroll, and employment of each establishment associated with a
firm. We measure the population density associated with multi-establishment firms
as the average density across the commuting zones of all its establishments, weighted
by each establishment’s employment. We also define such firms’ “Business Services
employment share” as the fraction of their employment at establishments with a NAICS-
5 code; the variable is one for single-establishment Business Services firms. For most
observations, the Business Services employment share is either zero or one.

The first column of Table 1 shows IT expenditure per worker also exhibited a strong
urban bias. The second column adds controls for a firm’s Business Services employment

16The data section in the Online Appendix provides more detail on the ACES data.
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TABLE 1: IT EXPENDITURE, POPULATION DENSITY, AND ESTABLISHMENT SIZE

IT Expenditure/Worker (x $1,000)

(1) (2) (3) (4) (5) (6)

Log Population Density 0.469*** 0.155*** 0.00140 0.101*
(0.0299) (0.0224) (0.0520) (0.0442)

Log Employment 0.352*** 0.181*** -0.170** 0.167***
(0.0158) (0.0132) (0.0607) (0.0450)

Log Emp. × Log Density 0.0889*** 0.00201
(0.0115) (0.00848)

Business Services Emp. Share -0.741 0.568** 1.696*
(0.539) (0.211) (0.764)

× Log Density 0.651*** -0.182
(0.0943) (0.140)

× Log Emp. 0.539*** -0.456*
(0.0452) (0.198)

× Log Emp. × Log Density 0.163***
(0.0346)

Constant -0.226 0.633*** 0.617*** 0.526*** -1.507*** -0.00412
(0.158) (0.119) (0.0808) (0.0739) (0.170) (0.226)

No. of Firms 45,000 45,000 45,000 45,000 45,000 45,000

Notes: Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. The table shows a
regression of firm-level IT expenditure per employee (in thousands of 2013 dollars) on the log of a firm’s
average commuting zone population density, the log of the firm’s employment size, and its Business
Services employment share. For multi-establishment firms, the average commuting zone density is
the employment-weighted average population density in 1980 across each establishment’s commuting
zone. The Business Services employment share is the share of a firm’s employment at establishments
with a NAICS-5 industry code. The data come from the 2013 Longitudinal Business Database and the
ACES/ICTS survey. For disclosure reasons, the sample size is rounded to the closest thousand.

share. It shows the urban bias of IT investments was particularly strong among Business
Services firms. For a firm with only Business Services employment, doubling log
population density raises IT expenditure per capita by $806, as opposed to only $155 at
a firm without any Business Services employment.

Next, we document the role of large firms and establishments in generating the urban
bias of IT investments. Column 3 of Table 1 shows IT investments per worker increase
in firm size. This finding corroborates recent evidence by Lashkari et al. (2024), who
documented similar facts in firm-level microdata from France. Column 4 shows the
relationship between per-worker IT investment and firm size is particularly strong in
the Business Services sector.

Corroborating the evidence from Columns 1-4, Columns 5 and 6 show that most IT
investments per capita occurred at large Business Services firms in the highest-density
commuting zones. After controlling for firm size and Business Services employment
share, the density coefficient shrinks substantially relative to Column 1. This finding
suggests firm-size differences across commuting zones and investment differences
across the firm size distribution explain most of the aggregate relationship between
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density and IT investments.

The ACES is the only US Census data product that provides information on IT invest-
ments at service firms. However, it reports all information on the firm instead of the
establishment level. In the Online Appendix, we corroborate the evidence in Table 1
with data purchased from Spiceworks, a commercial data provider, that are recorded
at the establishment level.17 The data include detailed information on IT expenditure
for a large sample of establishments. Using the Spiceworks data, we replicate Table 1
and find quantitatively similar results. In particular, the data confirm IT expenditure
per worker increases in location density and employment size for Business Services
establishments, and much less so for other sectors.

In summary, this section provided direct evidence that large Business Services firms in
high-density commuting zones invested more heavily in IT capital than other sectors
and firms. Our three facts above are consistent with the view that changes in the IT
capital usage of large Business Services establishments led to changes in their workforce
composition and wage structure that gave rise to urban-biased growth.

1.4 The Role of Education

An extensive literature studies changes in the educational composition of high-density
cities (Moretti, 2012; Diamond, 2016). Such changes could contribute to the urban-biased
growth phenomenon in two ways. First, if more educated workers started moving to
high-density cities, average wages in cities would increase because educated workers
tend to earn above-average wages. Second, the contribution of the Business Services
sector might reflect a general urban bias in the wage growth of educated workers, since
the sector employs many college-educated workers. This section studies both channels,
and shows they contribute little to urban-biased growth.

Since the LBD lacks demographic information on workers, we use data from the US
Decennial Census and the American Community Survey (ACS) to study the role of
education. Relative to the LBD, the Census contains information on individual workers’
characteristics, such as education, but it is self-reported. We aggregate the wage and
employment data to the commuting zone and 1-digit NAICS sector level separately
for workers with at least a college degree (”college”) and those with less education
(”non-college”).

We begin by quantifying the role of changes in the composition of the urban workforce
as a contributor to urban-biased growth. We decompose urban-biased growth into the
contribution of the observed changes in the composition of each sector holding wages

17The Spiceworks data was formerly known as Ci Technology Database, produced by the Aberdeen
Group, and before that as Harte-Hanks data. Due to the Spiceworks’s broad coverage and high accuracy,
many prior academic publications in economics have used it as a source of information (e.g., Bresnahan,
Brynjolfsson, and Hitt, 2002; Beaudry et al., 2010; Bloom, Draca, and Van Reenen, 2016).
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FIGURE 6: THE ROLE OF EDUCATION IN URBAN-BIASED GROWTH
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(C) Business Services
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(D) Other Sectors
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Notes: This figure shows average annual wages and college employment shares across commuting zones
(Tolbert and Sizer, 1996) sorted into deciles of increasing population density, separately for Business
Services and the rest of the economy in 1980 and 2015. Each decile accounts for one-tenth of the US
population in 1980. The underlying data come from the 1980 US Decennial Census and the 2015 American
Community Survey. Panel A shows average wages among college- and non-college-educated workers
across commuting zone deciles in the Business Services sector between 1980 and 2015; Panel B shows the
same outside the Business Services sector. Panel C shows college employment shares within the Business
Services sector across commuting zone deciles in 1980 and 2015; Panel D shows the same outside the
Business Services.

and sectoral employment shares fixed at their 1980 level and a residual term capturing
changes in wages and employment shares.18 We find that the shift of the Business
Services workforce toward college-educated workers alone accounted for less than
one-fifth of the sector’s urban-biased growth. Across all sectors, the disproportionate
shift toward college-educated workers in high-density cities can explain around 30% of

18Table OA.2 in the Online Appendix presents these results. In the Online Appendix, we also show the
equations used for the decomposition which are similar to those introduced in the description of Fact 1.
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all urban-biased growth, most of which reflects changes inside Business Services.

The contribution of compositional changes to urban-biased growth is moderate because
cross-commuting zone differences in wage growth are much larger than differences in
education deepening. To illustrate this, Figure 6 presents the college shares of employ-
ment within Business Services (Panel C) and in the rest of the economy (Panel D) across
commuting zones in 1980 and 2015. The college share of employment has increased
more in high-density cities than in low-density cities, so the Business Services sector
now employs a larger fraction of college workers than in the past. However, quanti-
tatively, the urban-biased wage growth of both education types within the Business
Services sector contributes much more to the urban-biased growth of the US economy
(see Panels A and B of Figure 6).

Next, we study whether the urban-biased growth of the Business Services sector reflects
a general urban bias in the wage growth of educated workers. The top row of Figure
6 shows wages for college- and non-college-educated workers in Business Services
(left) and the rest of the economy (right). Conditional on working in Business Services,
college- and non-college-educated workers have both experienced urban-biased growth.
However, outside Business Services, the urban-wage gradient remained stagnant for
college-educated workers and even declined for non-college-educated workers.19 In
other words, college-educated workers who did not work in Business Services expe-
rienced no urban-biased wage growth; such workers account for at least 70% of all
college-educated workers during all the years of our analysis.

The preceding results validate the usefulness of our sectoral perspective by showing
that urban-biased growth is a feature of the Business Services sector rather than a
particular education group.20 At the same time, the hallmark features of skill-biased
technical change, educational deepening and increases in the college wage premium,
are particularly strong in the Business Services sector. These findings align well with
the urban-biased expenditure on IT capital in Business Services documented above, as
the economics literature has long associated IT capital adoption with a distinct skill bias
(see Krueger, 1993).

19David Autor discussed the decline of the urban-wage premium of non-college-educated workers in
his Richard T. Ely Lecture in 2019 (see Autor, 2019).

20Other papers in the literature have studied the changes in the composition of high-density cities
towards so-called cognitive non-routine (”CNR”) occupations ( Rossi-Hansberg, Sarte, and Schwartzman,
2019; Jaimovich and Siu, 2020). In the Online Appendix, we present a similar analysis as in this section
for CNR occupations. Biased employment growth in CNR occupations (or ’occupational deepening’)
explains little of the urban bias in US growth.
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2. THEORY

This section introduces a theory of uneven spatial growth through investment-specific
technical change. The theory formalizes the relationship between capital use, factor
prices, and firm size across locations and sectors in general equilibrium. It provides
general conditions under which a spatially-neutral aggregate fall in investment prices
can generate urban-biased growth.

2.1 Model Setup

The model consists of set of locations indexed by ℓ and sectors indexed by s. Production
occurs using a set of factors F , indexed by f . We differentiate three subsets of factors
based on their mobility across locations and sectors. Capital factors are freely mobile
across locations and sectors. Labor factors face relocation frictions across locations and
sectors. Commercially-zoned land is immobile and specific to locations and sectors. We
denote the corresponding subsets of F by FK, F L, and FM, respectively. Trade across
locations is free. Time is discrete, indexed by t, and we suppress time subscripts where
possible.

Production and Market Structure. The economy has a single final good that serves
as the numeraire. To produce it, a representative firm combines varieties produced
by individual firms i and sectors s using a nested CES aggregator with within-sector
elasticity of substitution ιs and across-sector elasticity γ.

An individual firm i is defined by its location and sector, its productivity, zi, and the
differentiated variety for which it owns a blueprint. Firm i’s production technology is
given by

yi = ziFℓs(yi, x),(5)

where x = {x f } is a vector of factor inputs. We assume the production function Fℓs(yi, ·)
is strictly positive, continuously differentiable, and increasing in the quantities of all
inputs. Equation (5) allows for arbitrary productivity differences across locations and
sectors.21 The production function is non-homothetic, allowing for the level of output
yi to affect the marginal products of factors so that cost shares of each factor vary with
firm scale.

We define two general elasticities that describe how a firm’s relative factor demands

21In particular, it allows for the introduction of agglomeration economies and endogenous local
productivity that is external to the firm, as in the urban literature.
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change with factor prices and scale of production:

σf f ′ :=
∂ log x f /x f ′

∂ log w f ′/w f
and ϵ f f ′ :=

∂ log x f /x f ′

∂ log y
,(6)

where w f denotes the unit rental rate of factor f . The term σf f ′ denotes the elasticity
of substitution between two factors f and f ′; it takes a constant value in the CES case
and is 1 in the Cobb-Douglas case. We refer to the term ϵ f f ′ as the ”scale elasticity.”
The scale elasticity captures how relative factor demands changes with a firm’s level of
output, or scale. For homothetic production functions ϵ f f ′ = 0 ∀ f , f ′ ∈ F . We allow for
ϵ f f ′ ̸= 0 to capture the positive correlation between capital per worker and firm size
presented in Fact 3. Both elasticities are functions of technologies and factors prices,
and can hence differ across locations and sectors.

For every level of output, firms choose factor inputs to minimize their variable pro-
duction costs given local factor prices and technologies. We denote the variable cost
function of firm i in a location-sector by

cℓs(zi; yi, wℓs) = yiz−1
i vℓs(yi, wℓs),

where wℓs = {wℓs f } denotes the vector of rental rates for all factors in a given location-
sector. The unit variable cost, z−1

i vℓs(yi, wℓs), varies with firm scale as long as ϵ f f ′ ̸= 0.

The representative firm’s profit maximization implies firm i’s revenue function is yζs
i Ds,

where Ds is an endogenous measure of aggregate sectoral demand, and the demand
elasticity is a function of the elasticity of substitution across firm varieties within a
sector, ζs = (ιs − 1)/ιs.

Each period, firms choose a level of output to maximize variable profits given their cost
and revenue functions:

πℓs(zi) := max
y

[
yζsDs − cℓs(zi; y, wℓs)

]
.

To enter a location-sector pair, firms incur a fixed entry cost. The entry cost is produced
using a technology gℓs(x), where gℓs(·) is strictly positive, continuously differentiable,
increasing in each argument, and homogeneous of degree 1. We denote the correspond-
ing entry-cost function by eℓs(wℓs).

Upon entry, firms draw their productivity zi ∈ (0, ∞) from a distribution Ωs(z). We
assume entry costs are sunk to rule out selection on entry, in line with the empirical
evidence in Combes, Duranton, Gobillon, Puga, and Roux (2012). Firms exit at an
exogenous rate ξ, consistent with evidence from Walsh (2023).

In each period, new firms enter a given location-sector as long as the present discounted
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value of expected profits exceeds the entry costs, resulting in the following free-entry
condition:

eℓs(wℓst) =
∫

Vℓst(z)dΩs(z),

where Vℓst(z) is the present discounted value of a firm with efficiency z in location ℓ and
sector s at time t. We denote the total number of active firms in a given location-sector
at time t by Nℓst, which combines new entrants and surviving incumbents.

Local Factor Supply. We partition the vector of location-sector factor prices and factor
supplies into subvectors for each factor type, capital, labor, and commercial land:

wℓs = {wK
ℓs, wL

ℓs, wM
ℓs } and Xℓs = {XK

ℓs, XL
ℓs, XM

ℓs },

where wK
ℓs = {wK

ℓs f } and XK
ℓs = {XK

ℓs f }, and similarly for labor and commercial land.
We refer to wK

ℓs as the rental rates of capital, to wL
ℓs as the wages of different types of

workers, and to wM
ℓs as rents for commercial land.

The three types of factors differ in their mobility across locations and sectors. Capital
factors f ∈ FK are freely mobile within the economy, so that their rental rates are
the same across locations and sectors. The total national supply of capital, XK, is
endogenous and described below.

Commercially-zoned land-type factors f ∈ FM are immobile and non-tradable, so that
rental rates wM

ℓs differ across location-sector pairs. The supply of commercially-zoned
land within each location-sector, XM

ℓs , is exogenous.

Labor factors are imperfectly mobile across locations; their national supply, XL, is ex-
ogenous, but their local supply, XL

ℓs, depends on the utility-maximizing choices of
individuals. Each period, an individual worker j of labor type f chooses a location,
sector, and quantities of residential land (o) and the final good (c) to solve the following
utility-maximization problem:

max
ℓ

{ϑ
j
ℓEϑs max

s,o,c
{oα f c1−α f ϑ

j
s}} subject to rℓo + c ≤ wL

ℓs f ,

where ϑ
j
ℓ and ϑ

j
s are idiosyncratic preference shocks for sectors and locations, α f is the

expenditure share of type- f workers on residential land, and rℓ is the rental rate of
residential land. Workers first learn their location-specific shocks and only learn about
their sectoral preferences upon arriving in a location. The expectation operator indicates
workers have to form expectations over their sector-specific shocks within a location
when making their location decisions.

We assume workers draw their idiosyncratic preference shocks for each location and

21



sector from separate Fréchet distributions with inverse scale parameters Bℓ f and Bℓs f

and shape parameters ϱ1
f and ϱ2

f . These assumptions yield familiar expressions for the
fraction of type- f workers choosing to live in location ℓ, λℓ f , and for the fraction of
type- f workers in location ℓ choosing to work in sector s, µℓs f :

λℓ f =
Bℓ f (r

−α f
ℓ Ψℓ f )

ϱ1
f

∑ℓ Bℓ f (r
−α f
ℓ Ψℓ f )

ϱ1
f

and µℓs f =
Bℓs f (wL

ℓs f )
ϱ2

f

∑s Bℓs f (wL
ℓs f )

ϱ2
f
,(7)

where Ψℓ f := (∑s Bℓs f (wL
ℓs f )

ϱ2
f )

1/ϱ2
f is the expected utility of a type- f worker in location

ℓ prior to learning their sectoral preference shocks. The terms Bℓ f and Bℓs f play the
role of type-specific amenity terms for locations and sectors. The local labor supply of
type- f labor in a given location-sector is XL

ℓs f = λℓ f µℓs f XL
f .

Investment Decisions and Factor Ownership. A unit mass of identical atomistic
capitalists makes all dynamic investment decisions in the economy. They own all firms,
capital, commercially-zoned land, and residential land.

In each period, capitalists decide how much of the final consumption good to consume,
how much to invest in each type of capital, and how many firms to create in each
location and sector, to maximize the following utility function:

max
{Ct},{XK

t+1},{Nℓst+1}

∞

∑
t=0

βt log(Ct)(8)

subject to a set of period budget constraints:

Ct + pK
t (X

K
t+1 − (1 − δK

t )X
K
t ) + ∑

ℓ,s
eℓs(wℓst)(Nℓst+1 − (1 − ξ)Nℓst)

= wK
t XK

t + ∑
ℓ,s

wM
ℓstX

M
ℓs + ∑

ℓ,s
Πℓst + ∑

ℓ

rℓtOℓ,

where vector products are understood as dot products. The term β ∈ (0, 1) is the
capitalists’ discount rate, Oℓ is the stock of residential land in location ℓ, and Πℓst are
total variable firm profits in a location-sector pair. The term pK

t = {pK
f t} is the vector

of investment prices for the different types of capital and δK
t is the vector of capital

depreciation rates, which may vary over time. Commercially-zoned land and residential
land are in fixed supply.

A representative capital-producing firm transforms the final good into capital at capital-
type-specific rates Z f t so that pK

f t = 1/Z f t. Period 0 has an initial supply of type- f
capital K f 0, and an initial stock of firms in each location and sector Nℓs0. Finally, there is
a set of non-negativity constraints on each asset.
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Equilibrium. An equilibrium is a set of factor prices {wℓst}, rental rates of residential
land {rℓt}, investment prices of capital pK

t , consumption of capitalists Ct, a vector of
aggregate capital stocks {XK

t }, number of firms in each location {Nℓst}, and local labor
supply {XL

ℓst}, such that in each period, (i) the capitalists solve the problem in equation
(8), (ii) worker location decisions satisfy the expressions in equation (7), (iii) the labor
and commercially-zoned land markets clear in every location and sector, for every
type, (iv) the investment and spot capital markets clear for every capital type, (v) the
market for residential land clears in every location, and (vi) the final-good market clears
nationally.

A steady-state equilibrium is one in which all prices and allocations are constant across
periods t.

2.2 Investment-Specific Technical Change and Urban-Biased Growth

In this section, we describe the effect of a decline in the investment price of capital on
average wages across location-sector pairs in the steady state of the model. Any change
in the investment price of type- f capital is the result of investment-specific technical
change in Z f t, the rate at which the economy can transform the final good into type- f
capital. We take these productivity changes to be exogenous throughout the paper,
representing fundamental technical progress in production of certain types of capital.

We now define two objects in the model before stating our main result on the impact of
investment specific technical change on factor prices across locations and sectors.

Definition 1. In steady state, define the expected lifetime payments to factor f of a firm in
location ℓ and sector s as follows:

Φℓs f :=
∂eℓs(wℓs)

∂wℓs f
wℓs f + κ

∫
∂cℓs(z; y, wℓs)

∂wℓs f
wℓs f dΩs(z),

where κ := (β + 1)/(βξ + 1) > 1. Also define the lifetime payments to all factors in group F
of the average firm in location ℓ and sector s as follows:

ΦF
ℓs := ∑

f∈F F

Φℓs f where F = K, L, M.

The definition invokes Shephard’s lemma on the entry-cost and unit-cost functions of
the firm. The term κ is a combination of the capitalists’ discount rate and the firm exit
probability.

We refer to labor and commercial land collectively as local factors since their rental rates
are location-sector specific in equilibrium. We define the following notion of growth in
the average rental rate of local factors.
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Definition 2. In steady state, define the cost-share-weighted log change in the average rental
rate of all local factors as follows

d log w̄ℓs := ∑
f∈F L∪FM

ϕℓs f d log wℓs f where ϕℓs f :=
Φℓs f

∑ f ′∈F L∪FM Φℓs f ′
.

With this notation in hand, we establish the following theorem:

Theorem 1. In the steady state, the general equilibrium response of the average rental rate of
local factor in a location-sector pair to a change in the investment price of type- f capital, pK

f , is
given by

d log w̄ℓs = −
ΦK

ℓs f

ΦL
ℓs + ΦM

ℓs
d log pK

f +
ΦL

ℓs + ΦM
ℓs + ΦK

ℓs

ΦL
ℓs + ΦM

ℓs
d logDs.

Theorem 1 is the result of totally differentiating the free-entry condition. It shows
that the general equilibrium response of the average rental rate of local factors to an
exogenous decline in the investment price of capital is governed solely by relative factor
payments in the location-sector. The details of production functions, firm heterogeneity,
and factor supply are irrelevant. In particular, places with a greater ratio of payments
to type- f capital relative to local factors (land and labor) require a greater equilibrium
response of local rental rates.

The critical insight behind Theorem 1 is that the average rental rate of local factors is
pinned down by the free-entry condition alone, independently of factor supply curves.
To see why, recall that the free-entry condition equates a firm’s present discounted
value of variable profits with the entry cost. Since capital rental rates do not vary across
locations, the average rental rate of local factors has to adjust to offset variation in
firm profitability induced by technological differences across locations and sectors. In
particular, the average rental rate of local factors has to be higher in more productive
locations and sectors in equilibrium. Of course, the rental rate of any particular local
factor also depends on its local supply elasticity, but their average does not.

Now consider the effect of a decrease in the investment price of type- f capital. Cheaper
capital raises the variable profits of firms everywhere by lowering the rental rate of
type- f capital. However, the extent to which variable profits rise differs across locations
and depends on the importance of type- f capital in the cost structure of the average
local firm. As a result, the average rental rate of local factors has to rise differentially
across location-sector pairs to restore the free-entry condition.22

Theorem 1 shows the effect of a change in the investment price of capital has two parts.

22Rental rates of local factors rise via firms increasing their output and more firms entering, both of
which raise factor demand.
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The first term on the right-hand side is a direct effect. The higher the payments to type- f
capital relative to payments to local factors in a location-sector, the more a falling capital
investment price increases firm profitability. For given payments to local factors, the
higher the payments to capital, the more significant the cost savings from a decline in
its price, and the more the average rental rate of local factors has to rise to make up for
these profitability gains. For given payments to capital, the lower the payments to local
factors, the more their average rental rate has to rise to achieve the same reduction in
profitability.

The second term on the right-hand side of the equation in Theorem 1 presents an indirect
effect. A decrease in the price of type- f capital also raises aggregate demand, which
increases the sales of all firms. The intuition for the exposure of a location-sector to
these changes is analogous to the direct effect. All else equal, the higher a location’s
total factor payments, the larger its share of the aggregate economy and, hence, the
more it is affected by changes in aggregate demand. Given total factor payments, the
lower the payments to local factors, the more the average rental rate of local factors has
to adjust to restore free entry.

To build intuition for the cross-sectional implications of Theorem 1, we consider the
following special case:

Corollary 1. Consider a version of the economy with κ → 1 and two factors of production,
capital and labor. In this case, Theorem 1 reduces to:

d log wL
ℓs = −Λℓsd log pK + (1 + Λℓs)d logDs where Λℓs :=

wKXK
ℓs

wL
ℓsXL

ℓs
.

Corollary 1 shows that in the two-factor version with a static entry decision, the cross-
sectional variation in the wage response is summarized by a single exposure statistic Λℓs,
the ratio of total payments to capital relative to labor among all firms in location ℓ and
sector s.

For a decline in capital investment prices to generate urban-biased growth, exposure
as measured by Λℓs has to increase with population density in the cross-section of
locations. In the following subsection, we present a special case of the model without
firm heterogeneity to illustrate the determinants of the cross-sectional variation in
exposure.

2.3 The Determinants of Exposure: A Simple Example

Consider a single-sector version of the model with just one type of capital, one type of
labor, and no commercial land, in which κ = 1. We specialize the production function
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for variable and entry costs as follows:

yi = AℓF(yi, x) and g(x) = 1,

so that firms are homogeneous with z = 1 and locations only differ in a factor-neutral
productivity shifter Aℓ. We define urban-biased growth as faster wage growth in
locations with higher location productivity, because empirically higher population
density is strongly associated with higher labor productivity (see Ahlfeldt and Pietroste-
fani, 2019).23 For simplicity, we restrict the non-homotheticity to generate a non-zero
scale elasticity without inducing increasing returns, that is we assume ϵKL ̸= 0 and
∂v(y, wℓ)/∂y = 0.

The simple version of the model illustrates some of the key intuition behind Theorem
1. First, since labor is the only local factor, the free entry condition alone pins down
local wages, regardless of labor supply elasticities. In contrast, in the general case
with many factors to which Theorem 1 applies, free entry only pins down the average
rental rate of local factors. Second, with just two factors, the exposure term Λℓ is a
sufficient statistic for exposure differences to investment-specific technical change across
locations. Declines in the investment price of capital then lead to urban-biased growth
if the exposure increases with location productivity, Aℓ.

To see when exposure increases with location productivity, we totally differentiate the
exposure term (cf. Corollary 1) in the cross-section of locations:

d log Λℓ

d log Aℓ
=

Neoclassical︷ ︸︸ ︷
(σKL − 1)

d log wL
ℓ

d log Aℓ
+

Scale︷ ︸︸ ︷
ϵKL

d log y
d log Aℓ︸ ︷︷ ︸

Non-Homotheticity

+ (θ
V|K
ℓ − θ

V|L
ℓ )

d log y/Aℓ

d log Aℓ︸ ︷︷ ︸
Entry vs. Variable Cost

,(9)

where θ
V|K
ℓ ∈ [0, 1] and θ

V|L
ℓ ∈ [0, 1] are the variable cost shares in total payments to

capital and labor in location ℓ. Equation (9) shows that as we move from less to more
productive locations, local exposure changes through two channels.

The neoclassical channel captures the classic price and substitution effects in response to
the higher wages associated with more productive locations. The price effect causes
the exposure statistic Λℓ to fall as one moves from lower to higher-wage locations. The
substitution effect reflects a shift of the cost structure towards capital, whose price is
not increasing, and raises the ratio. The neoclassical channel lowers exposure of more
productive places to capital price changes as long as capital and labor are complements

23Whether this will be true in the equilibrium of the model is a quantitative question that depends on
the correlation of amenity and productivity terms. When we take the model to the data, we find that
larger places indeed have higher productivities.
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FIGURE 7: FIRM SCALE, WAGES, AND LOCAL PRODUCTIVITY
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Notes: The figure shows how wages and firm output vary with productivity in the cross-section of
locations in the simple version of the model. The left panel shows these relationships for two special
cases of the demand elasticity for firm-specific varieties: Cobb-Douglas (ζ → 0) and perfect substitutes
(ζ → 1). The right panel shows the same relationships for two special cases of the entry cost: no labor in
the entry cost (θL|E

ℓ = 0) and only labor in the entry cost (θL|E
ℓ = 1). Higher values on the x-axis imply

higher productivity and higher values on the y-axis imply higher wages or output.

in production, that is σKL < 1.

The scale channel captures the role of spatial firm size differences in generating variation
in local exposure. The scale channel has two components, both related to how firms’
cost structures change with scale. The first depends on how the optimal capital-labor
ratio in variable production changes with firm size, as captured by the scale elasticity
ϵKL. Suppose that larger firms are more capital-intensive, so that ϵKL > 0, and firms in
high-productivity locations are larger on average. In that case, this channel increases the
exposure of productive locations. The second component depends on how increasing
output changes the loading on variable cost versus entry cost. If output increases faster
than productivity, firms’ total costs in high-productivity locations consist of a larger
share of variable costs than those in low-productivity locations. This compositional
difference raises exposure in more productive locations if variable costs are more capital
intensive than entry costs (θV|K

ℓ > θ
V|L
ℓ ).

Equation (9) also shows that the cross-sectional patterns of exposure to IT price changes
depend on how strongly wages and firm scale increase with local productivity. The
simple model permits explicit expressions describing wage and firm size patterns in the
cross-section of locations:

d log wL
ℓ

d log Aℓ
=

ζ

ζθ
L|V
ℓ + (1 − ζ)θ

L|E
ℓ

and
d log y

d log Aℓ
=

θ
L|E
ℓ

ζθ
L|V
ℓ + (1 − ζ)θ

L|E
ℓ

,(10)
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where θ
L|V
ℓ ∈ [0, 1] is labor share in variable costs, θ

L|E
ℓ ∈ [0, 1] is the labor share in entry

costs, and ζ ∈ (0, 1). The elasticity of demand and the share of the local factor (labor)
in the entry cost play a crucial role in shaping the cross-sectional variation of wages,
output, and location productivity. Figure 7 shows the expressions in equation (10) in
two special cases that illustrate the role of the demand elasticity and the composition
of the entry cost. The left panel shows the Cobb-Douglas limit (ζ → 0) in red and the
perfect-substitutes limit (ζ → 1) in blue, while the right panel shows the case without
labor in the entry cost in red and with only labor in the entry cost in blue.

Figure 7 offers two important takeaways for the rest of our analysis. First, except for
the Cobb-Douglas case, wages always increase in local productivity.24 As a result,
the neoclassical channel is always active, pushing for lower exposure to capital price
movements in more productive locations as long as capital and labor are complements.
Second, for firm scale to increase with productivity (and hence for the scale channel to
be active), entry costs must rely on the local factor. The more important the local factor
in entry cost, the more scale increases with local productivity, and the stronger the scale
channel becomes.25 The Online Appendix provides detailed intuition for the patterns
in Figure 7.

Much of the intuition from the simple model carries over to our general theory. Consider
the empirically relevant case for the Business Services sector in which more productive
locations have higher wages, higher population density, and larger firms. In this case,
the scale channel raises the exposure of high-density locations since larger firms tend to
use IT capital more intensively. At the same time, the neoclassical channel implies high
wages lower exposure as long as capital and labor are complements. Whether the scale
channel dominates the neoclassical channel is a quantitative question.

The simple theory also highlights why urban-biased growth may be limited to some
sectors. For sectors where firm size does not increase with population density, or capital
intensity does not increase with firm size, the neoclassical channel suggests declines in
the investment price of capital lead to rural-biased growth. Finally, more generally, for
sectors that are not intensive users of capital, declines in investment prices do not lead
to significant general equilibrium wage responses in any location.

24In the Cobb-Douglas limit, each firm’s revenue is a fixed fraction of national sales. Higher location
productivity is one-for-one offset by lower prices for the firm’s product so that the marginal product of
labor is constant across locations.

25More productive locations have higher wages, so entry costs are higher in more productive locations
if labor is in the entry cost. As a result, firms need to operate at a larger scale to make enough variable
profits to pay for entry.
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2.4 Parameterization

To bring our theory to the data, we need to specify the production function, the entry-
cost function, and the distribution of firm heterogeneity.

In their canonical study on the impact of investment-specific technical change on the
skilled wage premium, Krusell et al. (2000) introduced a nested CES production function
with different elasticities of substitution for capital with high- versus low-skill labor. We
specialize our production function in equation (5) to this nested CES structure with a
slight modification to incorporate the non-homotheticity:

y := zi

(y
ϵ̄s
σs (Ah

ℓs)
1
σs h

σs−1
σs + (Ak

s)
1
σs k

σs−1
σs

) σs
σs−1

φs−1
φs

+ (Al
ℓs)

1
σs l

φs−1
φs


φs

φs−1

,(11)

where σs and φs denote the elasticities of substitution between capital and high- and
low-skill labor, respectively. Ah

ℓs and Al
ℓs are location-sector-specific productivity shifters

for high- and low-skill labor, and Ak
s is a sector-specific productivity shifter for capital.26

Our quantitative analysis interprets k in equation (11) as IT capital. IT capital has expe-
rienced a dramatic decline in its investment price compared to other capital types and
appears as the most essential capital input in the Business Services sector.27 As a result,
our analysis absorbs other types of equipment capital into the residual productivity
terms; incorporating them explicitly is straightforward.

Equation (11) is part of the class of non-homothetic CES functions introduced by Sato
(1977). More recently, Comin et al. (2021) used these function to study structural change
across sectors.28 If ϵ̄s = 0, the production technology collapses to that in Krusell et al.
(2000), in which each factor’s marginal product is independent of the scale of production,
and all firms in a location-sector have the same factor shares. If ϵ̄s ̸= 0, a firm’s marginal
factor products depend on its scale, y.29

The non-homotheticity parameter ϵ̄s is central to our theory, since it determines the
strength of the scale channel outlined above. Given the production function in equation

26Making these productivity shifters endogenous functions of local population size and composition,
as in the urban literature, changes nothing fundamental about our exercise, and we do this in a robustness
exercise below.

27See Figure OA.13 in the Online Appendix; other kinds of capital have seen mild price falls at best.
28To the best of our knowledge, Lashkari et al. (2024) and Trottner (2019) were the first to consider

non-homothetic production functions in structural macro models.
29With the non-homothetic CES function, the elasticity of substitution continues to be constant at

different ratios of input prices, but now varies across firms producing different levels of output at a given
ratio of input prices (see Sato, 1977).
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(11), the general scale elasticities in equation (6) take the following forms:

ϵkh = −ϵ̄s ϵkl = −ϵ̄s
φs − σs

1 − σs
θℓs(wℓs, y) ϵhl = ϵ̄s[1 −

φs − σs

1 − σs
]θℓs(wℓs, y),(12)

where θℓs(wℓs, y) ∈ (0, 1) is the share of high-skill labor in total payments to high-skill
labor labor and capital. The empirically relevant case is when φs > 1 > σs > 0 > ϵ̄s. In
this case, capital and high-skill labor are complements, capital and low-skill labor are
substitutes, and capital per worker increases with firm size, in line with the evidence
in Krusell et al. (2000) and in Table 1. Putting the non-homotheticity on high-skill
labor is the only choice that enables the model to generate all three of these patterns,
demonstrating why we chose the functional form in equation (12).

Importantly, the marginal rate of technical substitution between high-skill labor and
capital implied by the production technology in equation (11) is given by:

dy/dh
dy/dk

= (
k
h

Ah
ℓs

Ak
s
)

1
σs y

ϵ̄s
σs .

In the empirically relevant case of ϵ̄s < 0, the marginal rate of substitution is decreasing
in firm output. In other words, capital and high-skill labor are more complementary at
firms operating at a larger scale.30 In line with this intuition, the non-homothetic CES
production function can be micro-founded as firms choosing from a continuous menu
of homothetic technologies that differ in their fixed setup costs, marginal costs, and
factor intensities. Larger firms choose different technologies than smaller firms, as their
scale makes high-fixed-low-marginal-cost technologies more profitable. Trottner (2019)
and Lashkari et al. (2024) present this microfoundation and several alternatives.31

In addition, it is worth noting that ϵ̄s < 0 implies increasing returns to scale in produc-
tion. If σs > 1, a parameter restriction on the curvature of demand is necessary to ensure
a firm’s output choice is well defined. However, if σs < 1, marginal costs approach a
constant in the limit as output grows, and no restriction on the curvature of demand is
necessary. In the calibration section below, σs < 1 emerges as the empirically-relevant
case.

Another critical aspect of equation (11) is that given structural parameters, we can
choose its productivity shifters to match the observed data on average wages and total
employment for each location-sector and skill type in each period. Similarly, the shifter
on capital allows us to match the relative payments of capital to labor in each sector

30This implies, for example, that a large firm that seeks to increase its labor force by 10% needs to
increase its capital stock per worker by more than smaller firms to keep workers’ marginal product
constant.

31Instead of working with a non-homotheticity, other papers in the literature simply assume firm
productivity is biased so that larger, more productive firms produce in a more capital- or skill-intensive
way, see for example Burstein and Vogel (2017).
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and at each point in time. By choosing the productivity shifters in this way, we can
flexibly account for other sources of wage growth across location-sectors besides the one
highlighted by our theory. Hence, our theoretical framework is helpful as an accounting
device to understand which part of the wage growth in the data is due to changes in
the investment price of capital relative to other sources of spatial growth.

We choose the following functional form for the entry-cost production function:

gs(x) := τshηs lηs m1−2ηs ,

where h, l, m denote demand for high- and low-skill labor and commercial land, τs is a
sector-specific entry cost shifter, and 1 − 2ηs is the land share in entry cost. We denote
the location-sector-specific commercial land supply by Mℓs. For quantitative reasons,
we include commercial land in the entry-cost function and exclude capital. As shown
above, if entry costs depend on local factors, more productive locations have larger firms
in equilibrium. However, through the lens of our model, the observed wage-density
elasticity is not large enough to generate the observed firm-size-density elasticity in the
data. This finding suggests that land, whose price increases more sharply with density
than wages due to its fixed supply, should be included in the entry cost. On the other
hand, if capital were in the entry cost, its dramatic price decline in the data would imply
a large decrease in average firm size in all locations, which is at odds with the data.

In line with much of the literature, we choose the distribution of firm heterogeneity to
be Pareto with a scale parameter of 1 and a shape parameter ν so that:

Ωs(z) := 1 − z−ν,

for z > 1, so that no differences in firm heterogeneity exist across sectors.32

3. QUANTIFYING THE THEORY

We use the model as an accounting device to measure the variation in wages and
employment across locations, sectors, and worker types due to the observed decline in
the investment price of IT capital. In preparation, we estimate the model’s structural
parameters using a combination of model-implied estimating equations and indirect
inference.

3.1 Calibrating the Model

For our calibration, we map locations in the model to the 722 commuting zones covering
the continental US. We differentiate two sectors, Business Services and a residual cate-

32As a result, local differences in productivity shifters {Ah
ℓs, Al

ℓs} and factor prices drive all variation in
firm scale and input choices across locations and sectors.
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gory of all other sectors, which together cover all private, non-agricultural employment.
Following Krusell et al. (2000), we define high-skill workers as those with at least a
four-year college degree and low-skill workers as all others; we refer to these groups as
college- and non-college workers from here on. We calibrate our model at an annual
frequency.

We use the US Decennial Census and American Community Survey data (see Ruggles,
Genadek, Goeken, Grover, and Sobek, 2017) in our calibration since these sources
include information on worker demographics. Since the data are decadal, we interpolate
linearly to get an annual panel of local wages and employment across commuting zones,
sectors, education groups, and residential rents for each commuting zone. In addition,
we obtain data on the investment price of IT and IT capital stocks by sector and year
from the BEA Fixed Asset Tables.

The model features time-varying structural residuals, {A f
ℓst, Ak

s , Bℓ f t, Bℓs f t, Oℓt, Mℓst,Zt},
and constant structural parameters, {ϵ̄s, φs, σs, τs, ηs, ϱ1

f , ϱ2
f , α f , ιs, ν, ζ, γ, β, ξ}. Our estima-

tion strategy does not assume the model is in a steady state between 1980 and 2015, and
we estimate most structural parameters by targeting moments along its out-of-steady-
state path.33 An advantage of this approach is that we can target empirical moments
from any year between 1980 and 2015. Given the structural parameters, we infer the
structural residuals so that the model matches wages and employment by commuting
zone, sector, education type, year, and data on rents, capital prices, and capital stocks.
Table 3 provides an overview of all calibrated parameters. Although most structural
parameters are estimated jointly, we discuss each parameter’s calibration strategy in
terms of its most informative empirical moment.

Non-homotheticity ϵ̄s. The non-homotheticity parameter ϵ̄s directly affects the scale
elasticities in equation (12). If ϵ̄s = 0, all scale elasticities are zero and factor input
ratios are constant across firms of different size given factor prices. We exploit this by
estimating ϵ̄s to match the positive relationship between capital expenditure per worker
and firm size in Table 1. In particular, for each sector, we run a regression of log capital
expenditure per worker on log firm employment in model and data in 2013, and choose
ϵ̄s so that the coefficients on log firm employment in model and data coincide. Note that
this indirect inference procedure does not require unbiased estimates of the coefficients
on firm size (Smith, 1993; Smith, 2008).34

The expressions for the scale elasticities in equation (12) show larger firms produce

33After 2015, we hold all structural residuals fixed, so the economy eventually converges to a steady
state.

34Recall that the ACES data combines capitalized and non-capitalized IT capital expenses. In the model,
firms only make capitalized expenses since the capitalists make all (non-capitalized) investments. As a
result, our estimation implicitly assumes that capitalized and non-capitalized expenses have a similar
elasticity to firm size. The Spiceworks data supports this assumption.
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with higher capital-to-labor ratios than smaller firms as long as ϵ̄s < 0 and σs < 1. To
match the positive relationship between capital expenditure per worker and firm size in
Table 1, our calibration finds that ϵ̄s = −0.21 for Business Services and ϵ̄s = −0.08 for
other sectors. The more negative non-homotheticity parameter ϵ̄s for Business Services
reflects that the empirical relationship between capital expenditure per worker and firm
size in Table 1 is stronger for Business Services than for other sectors.

Factor Substitution Elasticities σs and φs. The scale elasticities in equation (12) show
that, for a given ϵ̄s, the factor substitution elasticities determine how the ratio of college-
to non-college workers varies with firm size; we exploit this in our estimation of φs.

Using data from the 1992 Current Population Survey (CPS), we find a positive rela-
tionship between the college- to non-college ratio and firm size in both sectors in line
with evidence from Trottner (2019).35 For each sector, we regress the log of the college-
to non-college ratio on log firm employment and choose φs to ensure that the model
matches coefficients in the same regression in the data. We find that φs = 1.29 for Busi-
ness Services and φs = 1.52 for other sectors, so that non-college labor is moderately
substitutable with college labor in both sectors.

Given φs and ϵ̄s, the elasticity of substitution σs pins down the aggregate elasticity of
substitution between IT capital and labor. The model does not deliver a closed-form
expression for the capital-labor elasticity, either on the firm level or in the aggregate.
We let σs be constant across sectors and calibrate it to match the aggregate elasticity of
substitution between IT capital and labor of 0.95 estimated in Lashkari et al. (2024). We
find that σ = 0.49, making IT capital and college-educated workers strong complements
on the firm level.

While we are unaware of other estimates of the aggregate elasticity of substitution
between IT capital and labor besides Lashkari et al. (2024), several papers estimate more
general capital-labor substitution elasticities. For the manufacturing sector, Oberfield
and Raval (2021) find an aggregate elasticity of substitution between equipment capital
and labor between 0.5 and 0.7. Karabarbounis and Neiman (2014) estimate an elasticity
of 1.25 using data on all sectors across a panel of countries. For our counterfactual
analysis below, we present robustness checks with estimates of σ that target these
alternative macro elasticities instead.

Entry cost parameters, ηs and τs. The free-entry condition implies that in equilibrium,
firms in locations with higher entry costs must make greater variable profits and, hence,
operate at a larger scale. As a result, the level and cross-location variation of entry costs
determine aggregate and cross-location firm-size patterns in our model. Figure 8 shows
the average number of workers per establishment across commuting zones in 1980,

35See Figure OA.14 in the Online Appendix. Similarly, Trottner (2019) uses German microdata to
document that the college to non-college worker ratio increases with firm size.
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FIGURE 8: AVERAGE ESTABLISHMENT SIZE ACROSS COMMUTING ZONES, 1980
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Notes: The figure shows the average number of workers per establishment within each commuting zone
(Tolbert and Sizer, 1996) and sector. The slope numbers indicate the coefficient on log commuting zone
density in an employment-weighted regression of log average establishment size on the log commuting
zone population density; the line shows the fitted regression lines with 95% confidence intervals. Circle
size is proportional to the commuting zone population. The underlying data comes from the Quarterly
Census of Employment and Wages published by the US Bureau of Labor Statistics.

separately for Business Services and other sectors using data from the Quarterly Census
of Employment and Wages (QCEW).

We choose the level of entry costs in each sector, τs, to match the average establish-
ment size in each sector in 1980 and the labor share in entry costs, ηs, to match how
establishment size increases with population density in the cross-section of commuting
zones.

Commercial land prices increase faster with population density than wages since land
is in inelastic supply. As a result, the higher the land share in entry cost (1 − 2ηs), the
steeper the cross-sectional relationship between firm size and density in a sector. We
find ηs = 0.42 for Business Services and ηs = 0.45 for the other sectors. Commercial
land appears as an important factor in the entry cost because the empirical wage-density
gradient of 0.04 in the 1980 Census data is not enough to generate sufficient equilibrium
variation in firm profits and, hence, firm size across commuting zones.36 The land share
is larger in Business Services because its establishment-size-density gradient is steeper
than that of other sectors, see Figure 8.

36Recall that the model matches the full panel of wages exactly so that the wage-density gradient from
the data is the same as the wage-density gradient in the model.
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TABLE 2: SECTORAL AND SPATIAL LABOR-SUPPLY ELASTICITIES

(1) (2) (3) (4)
College Non-College College Non-College

PANEL A: SECTORAL ELASTICITIES

∆ log(Wage) 0.0960 1.305∗∗∗ 0.691∗∗ 0.444∗∗∗

(0.126) (0.0777) (0.215) (0.118)

N 17713 17782 17713 17782
First Stage F 108.1 640.9 146.8 360.6
Fixed Effect: Year-Commuting-Zone
Commuting Zone Pop. Weighted

PANEL B: SPATIAL ELASTICITIES

∆ log(Deflated Wage Index) 4.796∗∗∗ 3.525∗

(1.065) (1.769)
∆ log(Wage Index) 4.100∗∗∗ 3.023∗∗∗

(0.889) (0.545)

N 2223 2223 516 516
First Stage F 20.24 3.971 28.02 37.37
Fixed Effect: Year
Instrumented Rent

Notes: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Robust standard errors in parentheses. This table implements
the structural labor supply equations for sectors and locations in the data. The underlying data comes
from the US Decennial Census Files and, after 2000, from the American Community Survey. We run
regressions in decadal differences and instruments for wage changes using the instrumental variables
described in the body of the paper. Panel A shows the regressions for the sectoral labor supply elasticities
based on equation (13). Columns 1 and 2 show coefficient estimates from a regression that uses data
on all NAICS-1 sectors. Columns 3 and 4 show the same regressions but weights by commuting zone
population in 1980. Panel B shows the regressions for the spatial labor supply elasticities based on
equation(14). Columns 1 and 2 show coefficient estimates from a regression that uses our full sample.
Columns 3 and 4 show estimates that follow the two-instrument procedure in Diamond (2016) and use a
smaller sample for which the requisite data is available.

Labor-supply elasticities, ϱ1
f and ϱ2

f . Different from preceding parameters, we es-
timate labor supply elasticities ”outside” the model, with the same data used in the
calibration of the model. Along its dynamic path, the model implies a set of structural
estimating equations that we can take directly to the data in a model-consistent way.

We begin by estimating the sectoral labor-supply elasticities using variation across
sectors within commuting zones. Taking logs of equation (7) and writing it in changes
yields the following estimating equation:

(13) ∆ log µℓs f t = ϱ2
f ∆ log wℓs f t + ∆ log

(
∑
s′

Bℓs′ f tw
ϱ2

f
ℓs′ f t

)
+ ∆ log Bℓs f t,

Equation (13) shows the coefficient on the wage-change term corresponds to the sectoral
labor-supply elasticity. The second term is a commuting zones, education group, and
year fixed effect. The third term is a structural residual that highlights the need to
instrument for wage changes to recover ϱ2

f : if wage growth correlates with changes
in the unobserved sectoral amenities in a location, an ordinary least squares (OLS)

35



regression yields biased estimates of ϱ2
f .

We construct a ”leave-one-out” predicted wage change for each commuting zone, sector,
and education group and use it as an instrumental variable (IV). In particular, we
construct:

IVℓs f = ∑
ℓ′ ̸=ℓ

µℓ′s f ∆wL
ℓ′s f ,

where wL
ℓs f denotes average wage for type- f workers in sector s in commuting zone

ℓ and µℓ′s f is the corresponding local employment share. The exclusion restriction
requires that, controlling for commuting zone, education type, and year fixed effects,
average wage changes outside a commuting zone are uncorrelated with changes in
type-specific amenities within a commuting zone.

Estimating equation (13) with commuting zone, education type, and year fixed effects
means we have to rely on cross-sector variation within each location and education
group. To increase the statistical power of our estimation, we estimate equation (13)
across NAICS-1 sectors instead of grouping all non-Business Services sectors into a
single residual category.

Panel A of Table 2 presents the resulting elasticity estimates. Columns 1 and 2 present
the estimated coefficients on the wage-change term in unweighted regressions, whereas
Columns 3 and 4 use population weights. Columns 3 and 4 show higher sectoral
elasticities for college-educated workers than those without a college degree and are
our preferred estimates. Our elasticities are at the high end of the 0.2-0.7 range implied
across different specifications in Artuç, Chaudhuri, and McLaren (2010), who pool their
data across all workers.

Similar to the sectoral elasticities, the model also implies an estimating equation for
the spatial labor-supply elasticity. In particular, taking logs of the first equation in
expression (7) and differencing across time, we obtain

∆ log λℓ f t = ϱ1
f ∆ log

(
r
−α f
ℓt Ψℓ f t

)
− ∆ log ∑

ℓ

Bℓ f t(r
−α f
ℓt Ψℓ f t)

ϱ1
f + ∆ log Bℓ f t.(14)

The spatial labor-supply elasticity appears as the coefficient of the change in the wage
index Ψℓ f t deflated by the rental rate. The second term on the right is a education type
and year fixed effect. The third term is the change in the location- and education-specific
amenity. Since these amenities are unobserved, estimating equation (14) with OLS may
yield biased estimates of ϱ1

f . As a result, we construct an instrument for the first term in
the equation.

We construct the deflated wage index for each commuting zones, education type,
and decade using previously estimated parameters and data. In particular, given our
estimate of the sectoral supply elasticity, observed wages, and the implied amenity
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residuals, we can construct Ψℓ f = (∑s Bℓs f (wL
ℓs f )

ϱ2
f )

1/ϱ2
f (cf. equation (7)). In addition,

we estimate α f directly from Decennial Census data by dividing mean annual rental
payments by mean annual income for each commuting zone and education group.

We instrument for changes in the deflated index using another Bartik-like IV constructed
as follows:

IVℓ f = ∑
s

µℓs f ∆wL
s f ,−ℓ,

where ws f ,−ℓ denotes the average sectoral wage for type- f workers in all locations
except location ℓ itself. The exclusion restriction requires that initial employment shares
are uncorrelated with changes in local amenities between two time periods.37

Columns 1 and 2 of Panel B of Table 2 present the result of this IV regression using
10-year differences from 1980-2010 over all 722 commuting zones.

Table 2 shows that our instrument has a weak first stage for non-college-educated
workers, which likely reflects that residential rents increase in response to local wage
growth, reducing the variation in their ratio. To address this, we adapt a strategy
from Diamond (2016) who creates separate instruments for changes in local wage and
rents. The instrument for wages is a Bartik-type IV similar to ours, the instrument for
rents interacts the Bartik-type IV with an index of exogenous land-use regulation and
available developable land from Saiz (2010).

Columns 3 and 4 Panel B of Table 2 present the results. Since this strategy requires data
on land-use regulation from Saiz (2010) only available for select Metropolitan Statistical
Areas (MSA), the sample size in Columns 3 and 4 is smaller than in Columns 1 and 2.38

Reassuringly, our results in Columns 1 and 2 and Columns 3 and 4 are similar, and we
use the first two columns in our baseline calibration.

Note that the labor-supply elasticities are the only structural parameter we estimate
using data over time. Since our mechanism operates through the labor demand side, the
labor-supply elasticities only affect its propagation, but not its strength per se. Recall
from our theory that the free-entry condition alone determines average wages in each
location-sector pair; the labor-supply elasticities thus only determine relative wages of
college and non-college workers and their employment responses.39

Other Structural Parameters. We set ιs = 4, following other structural work that uses

37Goldsmith-Pinkham, Sorkin, and Swift (2020) discuss how to estimate spatial labor-supply elasticities
using US Census data. Our setup deviates from theirs through an explicit control for rent and since we
run separate regressions for each worker type. We also implemented an alternative approach more akin
to the setup in Goldsmith-Pinkham et al. (2020) and found similar results.

38Note that our estimates deviate slightly from those in Diamond (2016) since their estimation features
additional restrictions as part of a Generalized Method of Moments estimator.

39Having separate labor-supply elasticities for each education group matters little for the strength of
our mechanism. In the Online Appendix, we demonstrate the robustness of our main model exercise to
assuming identical elasticities across groups.
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the LBD such as Garcia-Macia, Hsieh, and Klenow (2019) and Peters and Walsh (2021).40

We assume varieties have the same elasticity of substitution within and across sectors
so that γ → ∞. We use Census data from 1980-2015 for the average rent payments
to income to set the Cobb-Douglas share for housing α f to 0.18 for college-educated
workers and 0.32 for non-college-educated workers. We choose the tail coefficient of
the firm-efficiency distribution, ν, to match the tail coefficient of the establishment
size distribution in the LBD, which we estimate to be 1.2, consistent with Cao, Hyatt,
Mukoyama, and Sager (2017). We set the capitalist discount rate β to 0.97 to match a
long-run interest rate of 3%. We set the firm exit rate ξ = 0.1 to match the exit rate in
the LBD in 1980. Finally, we take the depreciation rate series for IT capital directly from
the BEA Fixed Asset Tables.

Productivities, Amenities, and Land Supply. Given parameters, we infer productiv-
ities (Ah

ℓst, Al
ℓst) and amenities (Bℓ f t, Bℓs f t) as structural residuals to ensure the model

matches average wages and employment counts for all locations, sectors, and worker
types exactly every year (see Redding and Rossi-Hansberg, 2017). We find that labor
productivity for college workers is strongly increasing in population density in both
sectors, while non-college productivity is not increasing with population density in
1980 and decreasing with density in 2015. Amenities for all workers types and all years
are strongly increasing in population density.

The investment price for IT capital in the model is given by pK
t = 1/Zt and we choose

Zt to match the time series of the price of IT capital from the BEA asset tables. We
choose the productivity of IT capital in each sector, Ak

s , to match the 1980 sector-specific
ratio of IT capital stock to wage bill.41

We choose the residential housing supply in each region, Oℓt, so that the model matches
average residential rents for each commuting zone and year exactly.42 Because we
do not observe commercial land prices for the cross-section of commuting zones, we
assume the commercial land supply in each location-sector, Mℓst, is proportional to that
location’s residential land supply. The constant of proportionality and entry-cost shifter,
τs, are not separately identified; we set the constant to 1 without loss of generality.

3.2 Location-Sector Exposure in the Calibrated Model

Using the calibrated model, we construct the policy functions that map firm size into
capital per worker within each location. The left panel of Figure 9 plots these policy

40Hottman, Redding, and Weinstein (2016) estimate a similar demand elasticity for US consumer goods.
41This is an intuitive moment: in a version of our model with capital discount rate δK = 1 in which

firms live for a single period, the capital stock divided by the total wage bill corresponds exactly to the
economy-wide version of the term in Theorem 1 that captures exposure to investment-specific technical
change in IT.

42Adding endogenous housing supply is trivial and isomorphic to our current setup with a different
labor-supply elasticity.
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FIGURE 9: IT CAPITAL PER WORKER AND IT PRICE EXPOSURE IN THE MODEL

(A) IT Capital Per Worker, 1980
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(B) IT Capital Price Exposure, 1980
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Notes: The figure presents the output from our calibrated model for 1980. The left panel plots the policy
functions that map firm size to optimal capital per worker within a set of illustrative locations. Factor
prices are constant across firms within a location-sector. We normalize capital per worker to 1 for firms
with one employee in Business Services in New York. The right panel plots the exposure statistic to IT
price changes for each location-sector pair as implied by Theorem 1. The exposure statistic equals the
ratio of total payments to IT capital relative to total payments to labor and commercial land in 1980.

functions for a handful of representative cities. The model predicts that firms in higher-
density locations like New York spend more on capital per worker than firms of the
same size elsewhere. As such, large firms in high-density cities are more exposed to
investment price declines of IT capital. Importantly, for a given firm size, firms in large
cities have a higher capital to labor ratios than firms in small cities. This reflects our
empirical finding that college-labor productivity is increasing in population density,
and that college-labor is complementary with IT capital.

Next, we construct the exposure term that Theorem 1 shows to be a sufficient statistic
for how local factor prices change in response to investment-specific technical change in
the calibrated model. The right panel of Figure 9 shows the ratio of total payments to IT
capital relative to total payments to labor and commercial land by sector and location in
1980. Theorem 1 shows that this ratio is a sufficient statistic for the exposure of local
factor prices in a location-sector to changes in IT prices.43

Exposure to IT price changes strongly increases with population density for the Business
Services sector and is almost flat for other sectors. The level difference in exposure
across sectors reflects sectoral differences in the productivity of IT capital (Ak

s). We infer
a higher productivity of IT capital for Business Services because our target moment, the
IT capital stock per dollar of payroll, is more than 3 times larger for Business Services

43Note that since our model has one type of capital, the ratio summarizes the location-sector exposure
to direct and indirect effects.
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than other sectors in 1980.44

How exposure increases with population density in each sector depends on the balance
of the neoclassical and scale channels introduced in Section 2.3.45 Since we estimate
that capital and college labor are strong complements, the neoclassical channel for
college labor pushes for lower exposure in high-wage, high-density commuting zones;
at the same, non-college labor and capital are substitutes, so a neoclassical channel for
non-college labor pushes for higher exposure in the same places.

In addition, the scale channel pushes for higher exposure in high-wage, high-density
commuting zones in both sectors. The scale channel is stronger in Business Services
relative to other sectors for two reasons. First, the empirical relationship between IT
capital per worker and firm size is stronger, such that we estimate a more negative
non-homotheticity parameter ϵ̄s. Second, the empirical relationship between local
population density and firm size is stronger, such that we estimate a larger role for
commercial land in entry costs.

The exposure elasticity in the right panel of Figure 9 combined with Theorem 1 suggests
a decline in the investment price of IT capital should have a strongly urban-biased
effect on local factor prices in the Business Services sector, and much less so for other
sectors. However, the theorem only applies for small changes in investment prices.
To understand the effect of the large observed decline in the investment price of IT
capital between 1980 and 2015 on wages across locations and sectors requires a general
equilibrium counterfactual.

4. ACCOUNTING FOR URBAN-BIASED GROWTH

Our calibrated model matches wages and employment counts across commuting zones,
sectors, education groups, and years exactly due to a large set of preference and technol-
ogy ”structural residuals.” It also matches the investment price series of IT capital. In
this section, we quantify how much of the urban-biased growth in the data is accounted
for by changes in the investment price of IT capital alone.

To do so, we take the 1980 cross-section of our model and compute the counterfactual
dynamic path of an ”IT-only” economy in which only the productivity of capital pro-
duction (Zt) varies. All other preference and technology structural residuals remain at
their 1980 levels. Changing the productivity of capital production (Zt) from its 1980 to
2015 value implies that the investment price of IT capital in our counterfactual economy
replicates the path of the price in the data. In addition, we adjust the aggregate college

44Table OA.1 shows this moment.
45Relative to the simple model, the quantitative model has two types of labor: one complementary

with capital and the other substituting. High wages decrease exposure for the complementary type of
labor; for the substitutable type of labor, the opposite is the case. The net effect depends on the relative
cost shares of the two types of labor.

41



TABLE 4: WAGE-DENSITY ELASTICITY IN DATA AND MODEL

Data IT-Only Economy 2015

1980 2015 Base ϵ̄s = 0 End. A End. B

Business Services 0.070 0.154 0.151 0.072 0.151 0.150
Other Sectors 0.060 0.070 0.069 0.060 0.069 0.068
Aggregate 0.063 0.102 0.103 0.067 0.103 0.101

∆ Aggregate 0.039 0.039 0.003 0.039 0.039

Notes: This table shows the coefficient on log population density from a regression of log average wages
on population density in US commuting zones, in the data and in the IT-Only economy. Note that the
1980 cross-section is the same in the data and the IT-Only economy. The data underlying the data columns
comes from the 1980 Decennial Census and the 2015 American Community Survey. Column 3 shows
the wage-density elasticity in the baseline IT-only economy. Column 4 shows the wage-density elasticity
in a homothetic version of the baseline IT-only economy with ϵ̄s = 0, other structural parameters the
same, but regional fundamentals re-calibrated. Column 5 shows the wage-density elasticity when local
productivity terms are increasing functions of local population density. Column 6 shows the wage-density
elasticity when local amenity terms for college workers are increasing functions of the local college share
of employment, as in Diamond (2016).

employment share as in the data to enable us to directly compare employment shares
across locations and sectors between our counterfactual economy and the data.

The first two columns of Table 4 present the wage-density gradient in the data in 1980
and 2015, both in the aggregate and separately for each sector. Note that because
we have to use Decennial Census data for the calibration, the wage-density gradients
in the data in both years differ somewhat from those in Figure 1. Column 3 shows
the counterfactual wage-density gradient in 2015 in our baseline ”IT-only” economy.
Declining IT prices alone can explain almost all of the increase in the wage-density
gradient. The increase in the gradient occurs primarily in the Business Services sector,
exactly as in the data. The decline in IT prices has different effects across sectors because
of the exposure differences across sectors shown in Figure 9. Figure 10 replicates Figure
1 using data from our ”IT-only” economy.

The increase in the aggregate gradient reflects changes in the sector-specific wage-
density gradients and the reallocation of employment across sectors. The left panel
of Figure 11 shows the college share of employment in each sector in the model and
the data. The right panel of Figure 11 shows the college share of employment across
commuting zones and sectors. The ”IT-only” economy generates almost the full degree
of reallocation in the actual data. It produces a slightly flatter gradient in the ratio
across locations, particularly in the highest-density deciles, including the cities of
New York and Chicago. Note that although we adjust the aggregate share of college-
educated workers as in the data, all sorting of workers across sectors and locations is an
endogenous response to the changes in the price of IT capital. Lastly, because the model
replicates the changes in worker stocks across locations and reproduces the change in
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FIGURE 10: URBAN-BIASED GROWTH ACROSS IN MODEL AND DATA
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Notes: This figure shows average annual wages across commuting zones (Tolbert and Sizer, 1996) sorted
into deciles of increasing population density in the model and the data. Each decile accounts for one-tenth
of the US population in 1980. The 1980 data come from the US Decennial Census, and the 2015 data from
the American Community Survey. The model data comes from a counterfactual economy in which only
the investment price of IT and the aggregate share of college workers change, as in the data. The 1980
data and model are identical by construction.

the wage gradients, it also generates much of the urban-biased increase in residential
rents observed in the data.46

To further illuminate the mechanism translating aggregate changes in IT prices into
unbalanced wage growth across regions, we compare an economy with and without
non-homotheticity in production. Our theory showed that non-homotheticity of the pro-
duction function is essential in generating urban-biased growth. The non-homotheticity
gives rise to the scale channel at the heart of high-density cities’ exposure to IT price
declines (cf. Figure 9). In Column 4 of Table 4, we present the wage-density gradient
in 2015 in a homothetic version of the model, with the non-homotheticity parameter
set to zero (ϵ̄s = 0), and re-calibrated technology and preference residuals. Without
the non-homotheticity, the wage-density gradient does not meaningfully increase as IT
prices fall.47

The model also captures that most urban-biased growth is due to within-sector wage
growth differences across commuting zones rather than across-sector reallocation of
employment. Figure 13 replicates the decomposition from Fact 1 in Section 1 in the
model-generated data. The vast majority of urban-biased growth that the IT price
decline generates comes from initial differences in Business Services employment shares
interacting with faster wage growth in the sector in higher-density locations. The share
accounted for by such wage-growth differences is more than 65% in the model and

46See Figure OA.15 in the Online Appendix.
47Shutting down the non-homotheticity does not entirely eliminate the scale channel. The second

component of the scale channel remains active since entry cost production does not use capital while
variable cost production does so that 1 = θ

V|K
ℓ > θ

V|L
ℓ . As a result, in the homothetic case, the wage-

density elasticity remains unchanged between 1980 and 2015 but does not decline.
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FIGURE 11: EDUCATION DEEPENING IN MODEL AND DATA
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Notes: The left panel shows the college share of employment in each sector over time for Business

Services and the rest of the economy. The right panel shows the college share of employment within
each commuting zone decile for Business Services and the rest of the economy in 1980 and 2015. Each
decile accounts for one-tenth of the US population in 1980. The 1980-2010 data come from the US
Decennial Census, and the 2015 data from the American Community Survey. The model data comes
from a counterfactual economy in which only the investment price of IT and the aggregate share of
college workers change, as in the data. The model matches aggregate college shares in the economy by
construction.

about 87% in the data.

In the Online Appendix, we also replicate the decomposition of urban-biased growth
into the contributions of large and small firms shown in Figure 4. Although the model
captures firm-size differences in total payroll growth well, it generates too much growth
from employment and too little from wages. The intuition for this finding is simple: in
our model all firms within a location and sector pay the same wages to their workers,
while in reality large firms pay higher wages for observationally identical workers (see
Trottner (2019)). Allowing for firm-specific labor-supply curves as in Trottner (2019) is a
straightforward extension that could help the model speak to these differences.

While the change in the price of IT capital can generate most of the observed urban-
biased growth, the structural technology residuals are important for much of the aggre-
gate wage growth common across locations. Figure 12 shows the technology structural
residuals in 1980 and 2015 for each sector and education group. For college-educated
workers in all sectors, aggregate productivity has increased and represents a key source
of aggregate wage growth. However, the structural residuals are not a source of urban-
biased growth.

We find that productivity growth for non-college workers exhibits a rural-bias in both
sectors. This finding may partially reflect growth of sub-industries of the Business
Services sector, such as business support services (NAICS 56) that predominantly use
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non-college labor and are growing fastest in low-density locations (see Liao, 2012). The
negative productivity growth for non-college workers in Business Services in high-
density cities may reflect the effects of IT capital adoption that our model does not
capture. For example, task-based frameworks such as Acemoglu and Restrepo (2022)
highlight that new technologies can replace jobs, something our production function
does not capture directly so that it would show up in the productivity residuals. Outside
the Business Services sector, the decline in non-college productivities in high-density
cities likely reflects the manufacturing sector’s decline, which happened most rapidly
in high-density cities (see Autor, 2019) and impacted non-college workers most.

In the Online Appendix, we compute additional counterfactual economies, in which
we vary only the technology residuals or only the amenity residuals. Confirming the
patterns in Figure 12, we find that changes in neither set of residuals generate any
urban bias in wage growth.48 The decline in IT prices is the sole force in the economy
generating meaningfully urban-biased wage growth.

An extensive literature in urban economics has emphasized the endogenous nature
of local productivity and amenities. Our calibration procedure infers technology and
preference residuals to match annual data and is agnostic about their endogenous
nature. That is, it is completely consistent with a world where urban agglomeration
economies and amenities are endogenous function of local population characteristics.

However, our growth accounting exercise may change when amenity and productivity
terms are partly endogenous. To understand how, we repeat our accounting ”IT-only”
counterfactual in the presence of endogenous productivity and amenity terms. We
use estimates from the meta-study of Ahlfeldt and Pietrostefani (2019) in allowing the
labor productivity shifters {Ah

ℓs, Al
ℓs} to increase in total local employment, a classic

”agglomeration” spillover. In addition, we follow Diamond (2016) and model positive
spillovers in amenities Bℓ f for college-educated workers from the presence of other
college-educated workers, using her estimate for the spillover parameter.49

Column 5 of Table 4 presents the resulting wage-density gradients in 2015 with pro-
ductivity spillovers. The result is virtually identical because the spillover parameter in
the meta-study of Ahlfeldt and Pietrostefani (2019) is small and total city populations
change little in our counterfactual.

In response to the decline in IT prices, the college share among workers in high-density
locations increases. With endogenous amenities as in Diamond (2016), these inflows
lead to higher amenities for college-educated workers and, hence, lower college wages
in spatial equilibrium, offsetting some of the urban-biased wage growth that would
otherwise occur. Column 6 shows the wage-density gradient generated by the decline

48See Table OA.3 in the Online Appendix.
49The Online Appendix provides additional details.

45



FIGURE 12: PRODUCTIVITY BY SECTOR AND EDUCATION IN 1980 AND 2015

4

1

1/4

1/16

1/64

1/256

1 10 100 1K 10K

 1980
 2015

(A) Business Services - College

4

1

1/4

1/16

1/64

1/256

1 10 100 1K 10K

(B) Business Services - Non-College
Pr

od
uc

tiv
ity

Commuting Zone Density
(1980 population/mi2)

4

1

1/4

1/16

1/64

1/256
1 10 100 1K 10K

 1980
 2015

(C) Other Sectors - College
4

1

1/4

1/16

1/64

1/256
1 10 100 1K 10K

(D) Other Sectors - Non-College

Pr
od

uc
tiv

ity

Commuting Zone Density
(1980 population/mi2)

4

1

1/4

1/16

1/64

1/256
1 10 100 1K 10K

 1980
 2015

(C) Other Sectors - College
4

1

1/4

1/16

1/64

1/256
1 10 100 1K 10K

(D) Other Sectors - Non-College

Pr
od

uc
tiv

ity

Commuting Zone Density
(1980 population/mi2)

Notes: The figure shows the calibrated productivity residuals across commuting zones (Tolbert and Sizer,
1996) in 1980 and 2015, separately for each sector and education group. Each dot represents a commuting
zone-, sector-, education, and year-specific productivity term. The size of each dot is proportional to the
commuting zone population. We scale all productivity terms by the 2015 productivity of college-educated
workers in the Business Services sector in the New York commuting zone.

in IT prices in the version of the model with endogenous amenities. The model predicts
a slightly smaller increase in the wage-density gradients once productivities endoge-
nously adjust, because workers do not need as much monetary compensation to live in
high-density cities when amenities improve.

Finally, Table OA.3 in the Online Appendix provides additional robustness checks for
our accounting exercise. We show how the contribution of the change in IT prices to
urban-biased growth depends on the value for the aggregate elasticity of substitution be-
tween capital and labor we target in our calibration of σ. When we target an elasticity of
0.65 from Oberfield and Raval (2021), the decline in IT prices generates only about half of
the urban-biased growth seen in the data, when we target 1.25 from Karabarbounis and
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FIGURE 13: DECOMPOSING URBAN-BIASED GROWTH IN MODEL AND DATA

-25 0 25 50 75 100
Share of Urban Bias (%)

Model: Other Sectors

Data: Other Sectors

Model: Business Services

Data: Business Services
Decomposition 1
Aggregate

Decomposition 2
∆ Wage
∆ Share
Covariance

Decomposition 3
∆ Wage, Aggregate Share
Residual

Notes: The figure decomposes the difference in 1980-2015 wage growth between commuting zones
with above-median and below-median densities in 1980 into the contributions of each NAICS-1 sector,
separately in data and model output. The 1980 data come from the US Decennial Census, and the 2015
data from the American Community Survey. The model data comes from a counterfactual economy in
which only the investment price of IT and the aggregate share of college workers change, as in the data.
The blue bars show the share of the wage growth difference accounted for by each sector (cf. equation
(2)). The red bars decompose the blue bars into the separate contributions of within-industry wage
growth, across industry relocation, and a covariance term (cf. equation (3)). The green bars decompose
the blue bars into a component due to wage growth differences if all commuting zones had the same
sectoral employment shares and a residual component (cf. equation (4)). We classify above-median
density commuting zones as the highest density commuting zones jointly accounting for 50% of 1980
employment. All values are adjusted for inflation to 2015 dollars using the BEA PCE price index.

Neiman (2014) it explains more than three times the observed urban-biased growth.50

A lower elasticity of substitution means a stronger neoclassical channel, which lowers
exposure in high-density locations; a higher elasticity weakens the neoclassical channel
or even makes it help raise the exposure of high-density locations as outlined in Section
2.3. Table OA.3 also shows urban-biased growth in the IT-only economy when college-
and non-college-educated workers have the same labor-supply elasticities set to the
average values across groups. Our findings are virtually unchanged, suggesting het-
erogeneous labor-supply elasticities are not essential for understanding urban-biased
growth.

CONCLUSION

Recent economic growth has been strikingly biased toward the richest and largest
cities in the US. This paper shows that understanding why requires focusing on large
establishments in skill- and information-intensive Business Services industries. These

50Note that both Oberfield and Raval (2021) and Karabarbounis and Neiman (2014) provide aggregate
elasticities for all types of capital, not IT capital specifically. Our baseline calibration targeted an elasticity
specific to IT capital from Lashkari et al. (2024).
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service firms have been key beneficiaries of innovation in information technology,
which they used to scale up operations in the most productive US cities. A better
understanding of these services can unlock new perspectives on the nature of economic
growth in knowledge economies, and the accompanying inequality between workers
and locations.
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A. PROOFS AND DERIVATIONS

In this section, we derive the main theoretical results of the paper.

A.1 Derivation of the Demand System

Let a intermediate input varieties be indexed by ω. Denote the total number of varieties
in each sector by Ns. The representative firm producing the final good has the following
production function:

Y =

(
∑

s

(∫ Ns

0
qζs

s (ω)dω

) ς
ζs
) 1

ς

:=

(
∑

s
Qς

s

) 1
ς

,

where the elasticity of substitution over firm varieties within a sector is ιs := 1
1−ζs

and
the elasticity of substitution over sectoral CES bundles, Qs, is γ := 1

1−ς . Solving the
representative firm’s profit maximization problem yields the standard demand curve
for an individual variety:

ps(ω) = qs(ω)−
1
ιs Ds where Ds :=

P
ιs−γ

ιs
s

P
1−ς

ιs

I
1
ιs ,

and I denotes total demand for the final good. The optimal sectoral price index, Ps

is defined by P1−ιs
s =

∫ Ns
0 ps(ω)1−ιs dω and the ideal price index of the final good, P,

is defined by P1−γ = ∑s P1−γ
s . The term Ds is a measure of sector-specific aggregate

demand. Using the preceding expression, we can then express a firm’s revenue function
in terms of the output or the price of its variety:

rs(ω) := y(ω)ζsDs and rs(ω) := p(ω)
ζs

ζs−1D
1

1−ζs
s .(OA.1)

A.2 Proof of Theorem 1

We first state a Lemma that links the rental rate and the investment price of capital in
the steady state.

Lemma 1. In steady state, the following holds for the rental rate of capital type f :

wK
f t = (R̄ − (1 − δK

f ))pK
f t = (R̄ − (1 − δK

f ))
1
Z f

,

where R̄ comes from the steady-state Euler equation, and is invariant at 1/β.
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Proof. The rate of return of a unit of type- f capital in any period t is

Rt =
wK

f t

pK
f t
+

pK
f t+1

pK
f t

(1 − δK
f ),

Note that in steady state the investment price of capital is constant over time, but
then pK

f t = pK
f t+1 = 1/Z f . Noting that in steady state Rt = R̄ = 1/β, then yields the

result.

For convenience, we restate Theorem 1 here and then prove it.

Theorem. In the steady state, the general equilibrium response of average local-factor prices in
a location-sector to a change in the investment price of type- f capital, pK

f , is given by

d log w̄ℓs = −
ΦK

ℓs f

ΦL
ℓs + ΦM

ℓs
d log pK

f +
ΦL

ℓs + ΦM
ℓs + ΦK

ℓs

ΦL
ℓs + ΦM

ℓs
d logDs.

Proof. Consider the free-entry condition in steady state:

eℓs(wℓs) = κ
∫

πℓs(z)dΩs(z)

= κ
∫

max
y

[yζsDs − z−1yvℓs(y, wℓs)]dΩs(z).

Now by the envelope theorem:

∂πℓs(z)
∂wℓs f

= −z−1y⋆
∂vℓs(y, wℓs)

∂wℓs f
,

where y⋆ denotes the profit-maximizing level of output of them firm. In addition, we
also have

∂π(z)
∂Ds

= yζs
⋆ .

Totally differentiate the free-entry condition and use these expressions to obtain

∑
f

∂eℓs(wℓs)

∂wℓs f
dwℓs f = κ

∫ [
yζs
⋆ Dsd logDs − ∑

f
z−1y⋆

∂vℓs(y⋆, wℓs)

∂wℓs f
dwℓs f

]
dΩs(z).

(OA.2)

We can also write the free-entry condition using Shephard’s Lemma as

∑
f

∂eℓs(wℓs)

∂wℓs f
wℓs f = κ

∫ [
yζs
⋆ Ds − ∑

f
z−1y⋆

∂vℓs(y⋆, wℓs)

∂wℓs f
wℓs f

]
dΩs(z).(OA.3)
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Using equations (OA.3) in (OA.2) yields

∑
f

[
∂eℓs(wℓs)

∂wℓs f
wℓs f + κ

∫
z−1y⋆

∂vℓs(y⋆, wℓs)

∂wℓs f
wℓs f dΩs(z)

]
d log wℓs f

= ∑
f

[
∂eℓs(wℓs)

∂wℓs f
wℓs f + κ

∫
z−1y⋆

∂vℓs(y⋆, wℓs)

∂wℓs f
wℓs f dΩs(z)

]
d logDs.

We use Definition 1 to simplify the preceding equation:

∑
f

Φℓs f d log wℓs f = ∑
f

Φℓs f d logDs.

Next, note that by Lemma 1, the steady state change in the rental rate of type- f capital is
independent of the rental rate of type- f ′ capital. As a result, in response to the change of
the investment price in type- f capital, we have d log wℓs f ̸= 0 and d log wℓs f ′ = 0∀ f ′ ∈
FK \ f .

Using this and Definition 2, we can write:

d log w̄ℓs = −
ΦK

ℓs f

ΦL
ℓs + ΦM

ℓs
d log wK

f + (
ΦL

ℓs + ΦM
ℓs + ΦK

ℓs

ΦL
ℓs + ΦM

ℓs
)d logDs.

Lastly, we can use Lemma 1 to replace the rental rate of capital with its investment price,
so that:

d log w̄ℓs = −
ΦK

ℓs f

ΦL
ℓs + ΦM

ℓs
d log pK

f + (
ΦL

ℓs + ΦM
ℓs + ΦK

ℓs

ΦL
ℓs + ΦM

ℓs
)d logDs,

which concludes the proof.

A.3 Derivation of Equations in the Simple Model

We derive the expressions in the simple model section in a number of steps.

Profit Maximization and Free Entry Recall that in the simple model, firms do not
differ in productivity; without loss of generality, we set z = 1 for all firms. We can write
a firm’s variable profits as follows:

πℓ = py − yA−1
ℓ v(y, wℓ).
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Taking first-order condition with respect to output and re-arranging yields:

pℓ =
1
ζ

A−1
ℓ v(y, wℓ)(1 +

∂ log v(y, wℓ)

∂ log y
) :=

1
ζ

A−1
ℓ v(y, wℓ)(1 + v̄ℓ),

where v̄ℓ is a measure of the increasing returns to scale induced by the non-homotheticity
in production. Note that v̄ℓ = 0 in the homothetic case.

We can plug the optimal pricing expression into the definition for aggregate demand
to rewrite the expression for aggregate demand in equation (OA.1) in terms of factors
prices and output. Combining the pricing rule with the demand function,

yζ−1D =
1
ζ

A−1
ℓ v(y, wℓ)(1 + v̄ℓ).(OA.4)

Plugging the pricing rule into the expression of firm variable profits and setting the
result equal to the entry cost yields

π⋆
ℓ = yA−1

ℓ v(y, wℓ)(
1 − ζ

ζ
+

1
ζ

v̄ℓ) = e(wℓ).(OA.5)

Equations (OA.4) and (OA.5) pin down wages and output, given capital rental rates
and aggregate demand, making wages and output are the only endogenous variables
that vary in the cross-section of locations.

Exposure in the Cross-Section In the simple model, the exposure elasticity simplifies
to the following:

Λℓ =
wKXK

ℓ

wL
ℓ XL

ℓ

=
wK

wL
ℓ

yA−1
ℓ vwK + ewK

yA−1
ℓ vwL

ℓ
+ ewL

,(OA.6)

where vx and ex for x = wL
ℓ , wK denote the derivative of the variable cost and entry-cost

function with respect to the respective price. Differentiating equation (OA.6) in the
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cross-section of locations yields

d log Λℓ =
yA−1

ℓ vwK

yA−1
ℓ vwK + ewK

d log y −
yA−1

ℓ vwK

yA−1
ℓ vwK + ewK

d log Aℓ

+
yA−1

ℓ vwKwL
ℓ
+ fpw

yA−1
ℓ vwK + ewK

wℓd log wℓ +
yA−1

ℓ vpy

yA−1
ℓ vwK + ewK

yd log y

− d log wℓ −
yA−1

ℓ vwL
ℓ

yA−1
ℓ vwL

ℓ
+ ewL

ℓ

d log y −
yA−1

ℓ vwL
ℓ y

yA−1
ℓ vwL

ℓ
+ ewL

ℓ

d log y

+
yA−1

ℓ vwL
ℓ

yA−1
ℓ vwL

ℓ
+ ewL

ℓ

d log Aℓ −
yA−1

ℓ vwL
ℓ wL

ℓ
+ fwL

ℓ wL
ℓ

yA−1
ℓ vwL

ℓ
+ ewL

ℓ

wL
ℓ d log wL

ℓ .

We define the following cost shares:

θ
V|L
ℓ :=

yA−1
ℓ vwL

ℓ

yA−1
ℓ vwL

ℓ
+ ewL

ℓ

and θ
V|K
ℓ :=

yA−1
ℓ vwK

yA−1
ℓ vwK + ewK

,

which give the fraction of total labor (capital) payments that go to variable cost as op-
posed to entry costs. Using this definition, we rearrange terms to derive the expression
from the body of the paper:

d log Λℓ

d log Aℓ
= (σKL − 1)

d log wL
ℓ

d log Aℓ
+ ϵKL

d log y
d log Aℓ

+ (θV|K − θV|L)
d log y/Aℓ

d log Aℓ
(OA.7)

where

σKL :=
∂ log Kℓ/Lℓ

∂ log wL
ℓ /wK and ϵKL :=

∂ log Kℓ/Lℓ

∂ log y
,

are the elasticity of substitution between capital and labor for a given level of output
and the capital intensity in variable cost as a function of firm scale, for given factor
prices. Kℓ and Lℓ are the total amounts of capital and labor used in location ℓ across
both variable and entry cost.

Next, we use equations (OA.4) and (OA.5) to find an expression for the cross-sectional
terms in equation (OA.7) in the equilibrium of the model. First, differentiate equation
(OA.4) in the cross-section of locations to obtain

(ζ − 1)d log y = −d log Aℓ +
vwL

ℓ
(y, wℓ)wL

ℓ

v(y, wℓ)
d log wL

ℓ +
vy(y, wℓ)

v(y, wℓ)
yd log y.(OA.8)
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We define the following two cost shares:

θ
L|V
ℓ :=

vwL
ℓ
(y, wℓ)wL

ℓ

v(y, wℓ)
and θ

L|E
ℓ :=

ewL
ℓ
(wℓ)wL

ℓ

e(wℓ)
,

which denote the share of labor payments in variable and entry costs, respectively.
Using this definition, we simplify equation (OA.8) to:

[(ζ − 1)− v̄ℓ]d log y = θ
L|V
ℓ d log wL

ℓ − d log Aℓ.(OA.9)

Now, we differentiate equation (OA.5) in the cross-section of locations to obtain:

yA−1
ℓ v(y, wℓ)[

1 − ζ

ζ
+

1
ζ

v̄ℓ]d log y − yA−1
ℓ v(y, wℓ)[

1 − ζ

ζ
+

1
ζ

v̄ℓ]d log Aℓ

+ yA−1
ℓ vwL

ℓ
(y, wℓ)[

1 − ζ

ζ
+

1
ζ

v̄ℓ]wL
ℓ d log wL

ℓ = ewL
ℓ
(wℓ)wL

ℓ d log wL
ℓ ,

which simplifies to

d log y − d log Aℓ = [θ
L|E
ℓ − θ

L|V
ℓ ]d log wL

ℓ(OA.10)

Plugging (OA.9) into equation (OA.10) and rearranging, we find:

d log wL
ℓ

d log Aℓ
=

(ζ − 1)− v̄ℓ + 1

θ
L|V
ℓ − [(ζ − 1)− v̄ℓ][θ

L|E
ℓ − θ

L|V
ℓ ]

.(OA.11)

Plugging this back into equation (OA.9) yields:

d log y
d log Aℓ

=
θ

L|E
ℓ

θ
L|V
ℓ − [(ζ − 1)− v̄ℓ][θ

L|E
ℓ − θ

L|V
ℓ ]

.(OA.12)

We now set v̄ℓ = 0 and combine equations (OA.11) and (OA.12) to obtain the following
two cross-sectional relationships:

d log wℓ

d log Aℓ
=

ζ

ζθ
L|V
ℓ + (1 − ζ)θ

L|E
ℓ

and
d log y

d log Aℓ
=

θ
L|E
ℓ

ζθ
L|V
ℓ + (1 − ζ)θ

L|E
ℓ

(OA.13)

which are the two expressions that appear in the expression for how the exposure
elasticity varies with location productivity.

Figure 7 in the body of the paper also shows some special cases of the preceding
expressions. We now discuss a set of special cases including the ones shown in the
paper.
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No Labor in Entry Cost. In this case, θ
L|E
ℓ = 0 and equation (OA.13) simplify to

d log wℓ

d log Aℓ
= 1/θ

L|V
ℓ and

d log y
d log Aℓ

= 0.

If labor is not used for entry costs, entry costs cannot vary across locations. As a result,
firms have to be equally profitable in all locations in equilibrium. Therefore labor costs
have to increase with local productivity to offset the entire productive advantage in
equilibrium.

Only Labor in Entry Cost. In this case, θ
L|E
ℓ = 1 and equation (OA.13) simplify to

d log wℓ

d log Aℓ
=

ζ

ζθ
L|V
ℓ + (1 − ζ)

and
d log y

d log Aℓ
=

1

ζθ
L|V
ℓ + (1 − ζ)

.

With only labor in the entry cost, entry costs increase one-for-one with wages. In more
productive locations, firms are more productive and hence sell larger quantities. Wages
increase less than output because the curvature of demand depresses the marginal
product of labor at higher levels of output.

Cobb-Douglas Case: ζ=0 In this case, ζ → 0 and equation (OA.13) simplify to

d log wℓ

d log Aℓ
= 0 and

d log y
d log Aℓ

= 1.

If the demand system is Cobb-Douglas, the representative firm spends a fixed share of
its expenditure on each firm. As a result, the revenue of each firm is invariant. Firms
in more productive locations produce larger quantities but at lower prices, so that the
marginal product of workers is the same in all locations regardless of their productivity.

Linear Production Function: ζ=1 In this case, ζ → 1 and equation (OA.13) simplifies
to

d log wℓ

d log Aℓ
= 1/θ

L|V
ℓ and

d log y
d log Aℓ

= θ
L|E
ℓ /θ

L|V
ℓ .

Entry costs are higher in more productive locations to offset higher profitability through
higher productivity. In this case, the marginal product of labor does not fall as the firm
increases output, so wages can increase in inverse proportion to their cost share with
productivity. Output is higher in more productive locations, the more so the higher the
labor share in entry costs because a larger labor share implies that entry costs increase
more steeply with location productivity.
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A.4 Factor Demands in the Quantitative Model

Consider the production technology from equation (11) that is common to all firms i.
Solving the cost minimization problem of a firm then yields the following cost function:

c(z; y, wℓs) = yz−1

[[
(wh

ℓs)
1−σs Ah

ℓsy
ϵ̄s + (wk)1−σs Ak

s

] 1−φs
1−σs + (wl

ℓs)
1−φs Al

ℓs

] 1
1−φs

.

Using Shepard’s lemma, we derive the following expressions for the individual factor
demands:

h = c(z; y, wℓs)
φs Pσs−φs

x (wh
ℓs)

−σs Ah
ℓsy

ϵ̄s

k = c(z; y, wℓs)
φs Pσs−φs

x (wk)−σs Ak
s

l = c(z; y, wℓs)
φs(wl

ℓs)
−φs Al

ℓs,

where P1−σs
x = (wh

ℓs)
1−σs Ah

ℓsy
ϵ̄s + (wk)1−σs Ak

s . Using these factor demands, we can find
the following input ratios:

h
k
=

(wh
ℓs)

−σs Ah
ℓsy

ϵ̄s

(wk)−σs Ak
s

and
h
l
=

Pσs−φs
X (wh

ℓs)
−σs Ah

ℓsy
ϵ̄s

(wl
ℓs)

−φs Al
ℓs

and
k
l
=

Pσs−φs
X (wk)−σs Ak

s

(wl
ℓs)

−φs Al
ℓs

.

With these expression, computing closed form expressions for scale elasticities is straight-
forward, and we find:

∂ log k
h

∂ log y
= −ϵ̄s;

∂ log h
l

∂ log y
= ϵ̄s[1 −

φs − σs

1 − σs
]θℓs(wℓs, y);

∂ log k
l

∂ log y
= −ϵ̄s

φs − σs

1 − σs
θℓs(wℓs, y),

where θℓs(wℓs, y) ∈ (0, 1) is the cost share of skilled labor in the capital-skill bundle.

A.5 Endogenous Local Fundamentals

A long literature suggests local productivities and amenities may be endogenous func-
tions of the size and composition of a location’s workforce. In our main calibration, we
abstracted from such ”spillover” effects. We then investigate their qualitative role in
affecting the strength of our mechanism.

Diamond (2016) provides direct evidence that the number of amenities for high-skill
workers is an increasing function of the share of high-skill workers in a location. We
change the location amenity term for high-skill workers in our model to incorporate
that channel by setting Bℓh = B̄ℓhϕ

χ1
ℓ , where ϕℓ is the ratio of college- to non-college-

educated workers in location ℓ. We borrow the parameter χ1 = 2.6 from Diamond
(2016). Note that we do not need to re-calibrate our model; we can simply decompose
the calibrated amenities into an endogenous and an exogenous part (B̄ℓh). Column 5 of
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Table 4 presents the resulting wage-density gradients in 2015.

Ahlfeldt and Pietrostefani (2019) provide estimates for productivity spillovers from
a meta-study of urban economics papers. We change the specification of local labor
productivity shifters in our model for workers of type f as follows:

A f
ℓs = Ā f

ℓs(XL
ℓ )

χ2 ,

where XL
ℓ indicates the total population count in location ℓ. The study by Ahlfeldt

and Pietrostefani (2019) implies χ2 = 0.04. Column 6 of Table 4 presents the resulting
wage-density gradients in 2015.

B. DATA CONSTRUCTION

In this section, we provide additional details on the datasets used in the body of the
paper.

B.1 Longitudinal Business Database (LBD)

We use the administrative, establishment-level LBD data from the US Census Bureau
from 1980-2015. The LBD reports industry codes for establishments in different clas-
sification systems, starting with the Standard Industrial Classification (SIC) and then
transitioning to the North American Classification System (NAICS) in 1997. The NAICS
system has received further updates in subsequent years. We use Fort and Klimek
(2016) to crosswalk historical SIC information into consistent NAICS records. We trim
outlier data, remove establishments without employment or payroll data, and omit
establishments with mean worker pay greater than $1,000,000 per year.

The LBD also contains information on which firm owns each establishment, allowing
us to combine it with other US Census datasets that report information on US firms.

B.2 Annual Capital Expenditures Survey (ACES)

The ACES provides broad-based statistics on business spending for new and used struc-
tures and equipment. United States Code, Title 13, authorizes this survey and provides
for mandatory responses. Supplemental to the current Annual Capital Expenditure
Survey, the Information and Communication Technology Survey (ICTS) collects data on
non-capitalized and capitalized business spending for information and communication
technology (ICT) equipment.

The ICTS covers all domestic, private, and non-farm firms. The ICTS sample consists
of approximately 46,000 companies with one or more employees. Larger companies
are selected yearly from the updated Business Register (BR); the survey includes all
companies with at least 500 paid employees. Smaller companies with employees are
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stratified by industry and payroll size and selected randomly by strata.

The survey includes four types of ICT equipment and software: computer and periph-
eral equipment; ICT equipment excluding computers and peripherals; electromedical
and electrotherapeutic apparatus; and computer software. Companies report non-
capitalized and capitalized expenses.

Data reporting changed with the 2013 survey, the first for which firms reported electron-
ically. The Census used mail-out/mail-back survey forms to collect data in previous
survey years. As a result, our analysis relies mainly on the 2013 iteration of the survey.
After 2013, the Census ran out of funding for the ICTS and discontinued it.

For 2013, we merged our LBD data with the ICTS data using the firm identifiers provided
in both surveys. We excluded electromedical and electrotherapeutic apparatus from our
analysis and aggregated all IT assets into a single measure of IT capital for each firm in
the survey. Using this information, we constructed the measure of IT expenditure per
worker described in the paper’s body. Our results are little changed when using earlier
survey years.

B.3 US Decennial Census and American Community Survey

The LBD data does not contain information on the workers at each establishment. We
create an additional panel dataset using information from the 1970, 1980, 1990, and 2000
US Decennial Census and the 2010 and 2015 American Community Survey (Ruggles
et al., 2017). The panel contains total employment and labor income for each commuting
zone, NAICS 1 sector, education group, occupation group, and year.

In constructing the panel from microdata, we drop all observations that are not in
the labor force, have zero income, are employed in the government or agriculture, or
are missing an industry identifier. We split workers into those with at least a college
degree (”college”) and those without (”non-college”), and those in cognitive non-routine
occupations (CNR) and all others (non-CNR) following Rossi-Hansberg et al. (2019).

We aggregate the data to 722 commuting zones (Tolbert and Sizer, 1996) covering the
entirety of the continental US. We use the crosswalks by Autor and Dorn (2013) to map
Census Public Use Microdata areas (PUMAs) native to the Census files to commuting
zones. For 1970 and 1980, the crosswalk uses Census ”county groups” instead of PUMA
identifiers.

We aggregate all our data into 1-digit NAICS sectors designed to capture the principal
functional differences between industry groups. To do so, we create a crosswalk from
the Census industry identifiers to NAICS codes, using the 2000 cross-section of the data
that includes both codes.

We define the average wage within a location-sector pair as the ratio of its total payroll
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to its total employment using Census-provided sampling weights.

To construct a household rental price index, we regress the log of household-level gross
rents on the dwelling age, number of rooms, number of bedrooms, number of units in
the building, and commuting-zone-year fixed effects, weighting by household sampling
weights. The resulting commuting zone fixed effects serve as the rental price index for
each year. Figure OA.15 shows the resulting rent-price index for 1980 and 2015.

B.4 Quarterly Census of Employment and Wages (QCEW)

For some of our aggregate wage, employment, and establishment statistics (such as
Figures OA.4 and 8), we use the publicly-available QCEW published by the Bureau
of Labor Statistics. The data come from unemployment insurance records and cover
most US workers. We drop observations located in the synthetic counties designated as
”Overseas Locations,” ”Multicounty,” ”Out-of-State,” or ”Unknown Or Undefined” and
counties with a privacy disclosure flag.

Prior to 1990, the QCEW used the SIC industry classification standard. To convert this
to the modern NAICS industry standard, we use the Fort and Klimek (2016) crosswalks
to the NAICS 2012 classification for the SIC 1977 codes for data from 1980-1986 and
the SIC 1987 codes for 1987-1990. We classified ”SIC 1520” as a non-Business Services
industry and ”SIC 9999” (non-classifiable establishments) as a non-Business Services
industry.

B.5 Current Population Survey (CPS)

We obtain information on employee characteristics by firm size from the CPS conducted
by the US Census Bureau. We accessed the data via IPUMS (Ruggles et al., 2017). Since
1992, the CPS has consistently asked respondents to report the size of their employer
using the following bins: ”<10 employees”, ”10-24”, ”25-99”, ”100-499”, ”500-999”, and
”1000+.” Data on employer size started in 1988. However, employer-size bins changed
several times in the first few years of coverage. The question reached its current form in
1992, so we use that year in our calibration. We drop employees working more than
168 hours per week and part-time workers who worked less than 30 hours in a ”usual”
week. We classify workers with more than a bachelor’s degree as ”college-educated”
and all other workers as ”non-college.”

B.6 County Business Patterns (CBP)

As a robustness exercise, we document the increase in the wage-density gradient in the
US Census Bureau’s CBP database in Figure OA.5. The CBP provides total payroll and
employment for each US county from 1980-2015.

We perform minimal processing of the data. We aggregate counties to commuting zones
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following Tolbert and Sizer (1996). We compute total payroll and total employment for
each commuting zone and compute average wages as their ratio. We deflate average
wages using the BEA PCE Deflator.

B.7 Bureau of Economic Activity (BEA) Fixed-Asset, Investment, and

Value-Added Data

We use the BEA Fixed Asset Tables’ ”Detailed Data for Fixed Assets and Consumer
Durable Goods” as our source of aggregate information on capital stocks and capital
investments by sector.

Our first and most direct output from the BEA data is a set of capital-type-specific
price indices. In particular, we extract the price indices for equipment capital and its
subcategories: information processing, industrial equipment, transportation equipment,
and other equipment. Similarly, we extract the price indices for intellectual property
capital and its subcategories: software, research and development, and entertainment.51

The left panel of Figure OA.13 shows the equipment capital price series, and the right
panel for intellectual property. The most important takeaway from these figures is that
most of the decline in equipment and intellectual property capital investment price is
due to information processing equipment and software.

Next, we extract several data series for more granular asset categories. In particular, we
extract the following information: (1) capital stock data in dollars, (2) capital quantity
index, (3) capital investment information, and (4) capital depreciation rates.52 We obtain
these information for the following assets that we jointly define as ”IT assets:” ENS1:
Prepackaged software; ENS2: Custom software; ENS3: Own account software; EP1A:
Mainframes; EP1B: PCs; EP1C: DASDs; EP1D: Printers; EP1E: Terminals; EP1F: Tape
drives; EP1G: Storage devices; EP1H: System integrators; EP12: Office and accounting
equipment; EP31: Photocopy and related equipment.

We compute a capital price series for each asset by dividing its nominal stock by the
corresponding quantity index. Using this price index, we adjust the data on capital
stocks and investments for each sector and year to be in 2015 dollars.

Our first output from the more granular data is the numbers on investment per worker
across 1-digit NAICS sectors in 1980 and 2015. To construct this figure, we first aggregate
investment in the more granular capital categories into investment in three broad types

51The nine series we extract have the following numbers in the BEA tables: Y033RG3Q086SBEA,
Y034RG3Q086SBEA, A680RG3Q086SBEA, A681RG3Q086SBEA, A862RG3Q086SBEA,
Y001RG3Q086SBEA, B985RG3Q086SBEA, Y006RG3Q086SBEA, Y020RG3Q086SBEA.

52We use the following data series respectively: (1) Current-Cost Net Capital Stock of Private Non-
residential Fixed Assets; (2) Fixed-Cost Net Capital Stock of Private Nonresidential Fixed Assets; (3)
Investment in Private Nonresidential Fixed Assets; (4) Current-Cost Depreciation of Private Nonresiden-
tial Fixed Assets.
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TABLE OA.1: IT CAPITAL STOCK TO PAYROLL RATIO BY SECTOR AND YEAR

1980 2015

Business Services 0.16 0.24
Other Sectors 0.05 0.07

Notes: The table shows the ratio of the IT capital stock to total payroll for Business Services and the rest of
the economy for 1980 and 2015. We obtain the IT capital stocks by sector from the BEA Fixed Asset Tables
and the total payroll by sector from the Quarterly Census of Employment and Wages.

of IT capital: (1) proprietary software by combining counts for codes ENS2 and ENS3,
(2) pre-packaged software simply as code ENS1, and (3) hardware by combining codes
EP1A to EP31. We obtain employment for each sector and year from the QCEW. Figure
5 shows investment per worker across NAICS-1 sectors in 2015 dollars for our three
categories of IT capital.

An important input into our calibration is the aggregate series of IT capital investment
prices, which we use to calibrate the productivity of capital production in our model.
Sectors differ in how much of each of the more granular IT capital assets they use at
any point in time, whereas in our model, there is just one type of IT capital. To address
this, we construct a sector-specific IT investment price. We take the price of the most
granular assets in each class from the BEA. We then compute a sectoral ideal (Fischer)
price index following the methodology of the BEA. The so-constructed price indices for
each sector account for the difference in the composition of the IT capital bundle across
sectors. Lastly, we deflate the sector-specific indices using the BEA PCE deflator. Figure
OA.16 shows the resulting IT price index for both sectors; they are very similar.

We compute the average depreciation rate of the IT capital in each sector by weighting
the depreciation rate for each asset type within the IT category by its stock in the sector.
The result is a time-varying series of sector-specific depreciation rates for IT capital,
which we feed directly into the model as its depreciation rate parameter. Like average
IT prices, the depreciation rate of IT assets across sectors looks very similar.

To calibrate the productivity of IT capital in each sector, Ak
s , we target a measure of how

much each sector spends on capital relative to labor. In particular, we sum nominal
capital stocks each year into a single IT capital stock for Business Services and the rest
of the economy. We then divided these stocks by the total payroll for each sector and
year. Table OA.1 presents the results. The Business Services sector’s IT capital stock per
dollar of payroll is significantly above that of the rest of the economy.

Note that the ratio in Table OA.1 corresponds to an aggregate version of the model-
implied exposure elasticity for the case where capital depreciates fully each period and
firms exit after one period.
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C. ADDITIONAL FIGURES AND TABLES

In this section, we present additional figures and tables referenced in the main part of
the paper. We provide more information on the data used in this section in Section B of
the Online Appendix.

C.1 Supporting Evidence for Section 1.2

This section presents supporting evidence for the urban-biased growth phenomenon
we documented in Section 1.2.

Urban-biased Growth in Other Datasets. Figure 2 in the paper’s body uses LBD data.
Figure OA.1 replicates Figure 2 in other datasets. Panel A presents the result from
the main paper using the LBD for ease of comparison. Panel B presents the result
using data from the US Decennial Census. Using the Census somewhat attenuates our
finding, perhaps due to noise of self-reporting. Panel C presents the result in the QCEW,
which is very similar to the LBD, but uses unemployment insurance data instead of
tax records reported on the worker instead of the establishment level; both datasets are
of administrative quality. Lastly, Panel D presents the results in the County Business
Patterns, which are a public, tabulated version of the LBD data.

Spatially-biased Growth with other Commuting Zone Orderings. Figure 2 in the
paper’s body relied on ordering commuting zones by their 1980 population density
and then grouping them into deciles of employment. Figure OA.2 replicates Figure
2 with alternative ways of constructing commuting zone deciles. Panel A shows the
result when ordering by population density in the US Decennial Census. Panel B
shows the result when ordering by total population size. Panel C shows the result
when computing the density of a commuting zone as the tract-weighted population
density. In constructing this alternative density measure, we consider the density
of each census tract and create an aggregate commuting zone density by taking the
population-weighted mean across tracts; this de-emphasizes rural tracts and empty
land (for example, the edges of the Los Angeles commuting zone). Finally, Panel D
shows wage growth when ordering commuting zones by their average wage in 1980.
Consistent with findings in Giannone (2022), wage growth appears flat when ordered
by the initial wage of the commuting zone.

Urban-biased Growth before 1980. Figure 1 in the paper’s body studied wage growth
between 1980 and 2015 and showed that it was strongly urban-biased. We recreate
Figure 1 with US Decennial Census/ACS data going back to 1950, since the LBD data is
not available before 1975. Figure OA.3 shows that there was mildly urban-biased wage
growth between 1950 and 1980, particularly in Business Services. However, the strongly
urban-biased growth starting in 1980 presents a clear structural break, precisely when
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IT prices begin to strongly decline in the data. Because we are using the Decennial
Census, the results for 1980 and 2015 do not exactly match those in Figure 1.

Using the Wage-Density Gradient to Measure Urban-biased Growth. In the paper’s
body, we show wage growth for deciles of commuting zones with increasing population
density. An alternative way to document the urban bias in recent US wage growth is to
study the changes in the relationship between average wages and population density
over time. The so-called wage-density gradient describes the coefficient of a regression
of log wages on log population density in the cross-section of US commuting zones,
and is often used in urban economics.

Figure OA.4 shows the evolution of the wage-density gradient using data from the
QCEW. This elasticity more than doubled between 1980 and 2008 before holding steady
in the subsequent years, reflecting the urban-biased growth documented in Figure 2. In
addition, we plot coefficients from quantile regressions of the same distribution and
show that the wage-density gradient evolved similarly in all quantiles. Note that we
recompute commuting zone density for each year in Figure OA.4.

The Evolution of the Wage-Density Gradient Across Datasets. Next, we demonstrate
that the wage-density elasticity increases in all major data sets on the US labor market.
Figure OA.5a shows the wage-density elasticity for each year computed in the QCEW,
the LBD, the US Decennial Census, and the CBP. We provide information on these data
sources in the data section of the Online Appendix. The wage-density coefficients in
data from the QCEW, CBP, and LBD all have a similar level and show comparable
trends over time. The point estimates from the Census/ACS data are somewhat lower
but exhibit similar time trends, with a sharp rise from 1980-2000 and a leveling off from
2000-2015.

The Evolution of the Wage-Density Gradient for Different Density Measures. Next,
we show that the wage-density elasticity has increased regardless of how we measure
location density. In addition, we show similar results for the wage-population-size
gradient. OA.5b shows the wage-density coefficient in the QCEW using different
measures of commuting zone density. First, we show the gradient using the 1980
population density of a commuting zone for all years instead of recomputing density
each year (cf. Figure OA.4). Second, we compute a commuting zone’s employment
density instead of its commuting zone density. Third, we use the 1980 tract-weighted
density of a commuting zone. Finally, we show the wage-population elasticity instead
of the wage-density elasticity, using 1980 commuting zone populations. All coefficients
exhibit broadly similar trends.

The Evolution of the Wage-Density Across US Counties. Figure OA.5c shows the
wage-density coefficient in the QCEW estimated across counties instead of commuting
zones. The wage-density coefficient estimated on county data is lower but shows a
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trend similar to that of the commuting zone estimates over time.

The Evolution of the Wage-Density Gradient in Europe. Figure OA.5d shows the wage-
employment elasticity computed across locations within the EU-15 countries. Instead of
wages, the outcome variable is GDP per worker. The regressor is employment instead
of population density since we lack the area data for European locations. Europe shows
trends similar to the US; the elasticity roughly doubles from about .04 in 1980 to about
.08 in 2010.

The Evolution of the Wage-Density Gradient in the Microdata. Figure OA.6 shows
the raw commuting-zone level data used to compute wage gradients in 1980 and 2015,
within and outside the Business Services Sectors, in the Decennial Census and ACS.

C.2 Supporting Evidence for Section 1.3

This section presents additional figures and exhibits for Section 1.3 in the paper which
introduces three facts on the urban-biased growth of the US economy.

Disaggregated Industry Detail within Sectors. The main decomposition in the paper
in Figure 3 presents results for 1-digit NAICS sectors. Figure OA.7 replicates Figure 3
for 2-digit NAICS industries. The industries within Business Services that contribute
most to urban bias are in descending order: Professional Services, Finance, Information,
Administrative Services and Waste, Management of Companies, and Real Estate.

Information Technology Investments per Worker across 2-Digit NAICS Industries.
Figure 5 in the paper showed information technology investments per worker for each 1-
digit NAICS sector. Figure OA.8 replicates Figure 5 for 2-digit NAICS industries. Almost
all sub-industries within the Business Services sector have made larger IT investments
per worker than any other industry in the US economy. Other industries that have
made significant IT investments per worker are Natural Resources and Utilities in 1980
and Natural Resources, Utilities, and Wholesale in 2015 (see also Ganapati 2024).

Employment and Wages at Large and Small Establishments. Figure 4 in the paper
showed that wage growth at large Business Services establishments accounts for most
urban-biased growth. In this section, we provide additional details. For disclosure
reasons, for this section, we define Business Services as only 2-digit NAICS codes 51, 52,
54, 55, so we omit Real Estate and Administrative Services relative to the definition in
the paper. Moreover, we define the large establishments as the largest establishments
that jointly account for 50% of the US workforce in 2015 which leads to a cutoff of 200
workers; in the body of the paper we defined them in 1980.

With these caveats, Figure OA.9 shows employment and wages at large and small
establishments across commuting zones, sectors, and decades. Panel A shows wages
at large and small Business Services establishments in 1980 and 2015. Panel B shows
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wages at large and small establishments in all other sectors in 1980 and 2015. Panel
C shows employment shares within each commuting zone decile at large and small
Business Services establishments in 1980 and 2015. Panel D shows employment shares
within each commuting zone decile at large and small establishments in other sectors in
1980 and 2015.

Figure OA.9 helps understand why wage growth at large Business Services establish-
ments accounts for most urban-biased growth. Panel A shows large wage growth
differences at large Business Services firms across commuting zones. At the same time
Panel C shows that large Business Services establishments account for a larger employ-
ment share in high-density commuting zones. However, differences in employment
shares across commuting zones are small compared to the wage growth differences in
Panel A. Moreover, Panel B also shows that the cross-sectional patterns of employment
shares are constant over time, so that differential changes in employment shares at large
Business Services firms do not contribute to urban-biased growth.

Firms or Establishments and Urban-biased Growth. Figure 4 in the body of the paper
shows the contribution of large and small establishments to the urban-biased growth
of the US economy. To construct it, we first compute the size of the establishment
that employed the median US worker in 1980 (about 100 workers) and then group
establishments into those above and below this median. In this section, we instead
compute the size of the firm that employed the median US worker in 1980 (about 1000
workers) and then group establishments into large and small based on whether the firm
that controls them is above or below this median.

Using these two ways of defining large and small establishments, we present a similar
decomposition as in Fact 2 in the body of the paper. In particular, we decompose the
wage change in each location ℓ as follows:

∆wℓ = µL
ℓO∆wL

ℓO︸ ︷︷ ︸
OL

+ µS
ℓO∆wS

ℓO︸ ︷︷ ︸
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+ µL
ℓN5∆wL

ℓN5︸ ︷︷ ︸
N5L

+ µS
ℓN5∆wS

ℓN5︸ ︷︷ ︸
N5S

+∑
se

we
ℓs∆µe

ℓs︸ ︷︷ ︸
S

+∑
se

∆µe
ℓs∆we

ℓs︸ ︷︷ ︸
C

,

where s = N5 and s = O denote the Business Services sector and other sectors, and
e = L and e = S index large and small establishments, or establishments of large
and small firms. µe

ℓs indicates the share of employment in location ℓ accounted for by
type e establishments/firms in sector s. we

ℓs indicates the average of workers at type e
establishments/firms in sector s in location ℓ. OL and OS refer to wage growth at large
and small establishments in the other sector, and similarly for N5L and N5S in Business
Services. The term S is the sectoral shift component, and the term C is the covariance
component.

Figure OA.10a presents the results of this decomposition and shows that most urban-
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biased wage growth occurred at establishments of large Business Services firms. Figure
OA.10b replicates Figure OA.10a using the establishment-based size definition instead.
The two figures are very similar, suggesting that establishments of large Business
Services firms are themselves large establishments. Using establishments or firms as the
unit of analysis does not affect the conclusion of our second fact: large establishments of
large firms within Business Services drove the urban-biased growth of the US economy.

Non-IT capital Investments per Worker across 1-Digit NAICS Industries. Figure 5
in the paper showed information technology investments per worker for each 1-digit
NAICS sector. Figure OA.11 replicates Figure 5 but for investments in non-IT capital.
Non-IT capital includes all private non-residential assets not classified as IT assets. In
contrast with IT investments, the Business Services sector does not emerge as an outlier.

Aggregate Wage and Employment Growth in the Business Services Sector. The left
panel of Figure OA.12 shows employment relative to 1980 for all NAICS-1 sectors in the
US economy. We highlight employment in the Business Services sector in red. Business
Services employment has more than doubled over this period. The only sector for which
employment has decreased is manufacturing. Total US employment has approximately
doubled in this period.

The right panel of Figure OA.12 shows average wages relative to 1980 for all NAICS-1
sectors in the US economy. We highlight wage growth in the Business Services sector in
red. Business Services wages have almost doubled since 1980. In most other sectors,
wage growth was below 40% over this period.

Overall, Figure OA.12 shows the rapid growth of the Business Services sector over our
study period.

IT Expenditure per Worker in the Spiceworks Data. The main body of the paper uses
data on firm-level IT expenditures from the Census ACES dataset. To our knowledge, the
ACES is the only source of IT investments on the firm or establishment level provided
by the US Census. To corroborate our evidence on IT expenditures across firms, we
acquired an additional dataset from a commercial data provider on IT investments
across US establishments. The Spiceworks data was formerly known as Ci Technology
Database, produced by the Aberdeen Group, and before that as Harte-Hanks data. Due
to its broad coverage and high accuracy, many prior academic publications in economics
have used this data (e.g., Bresnahan et al., 2002; Beaudry et al., 2010; Bloom et al., 2016).

The Spiceworks data contains spending on different types of IT technologies for a large
set of US establishments for several years. Spiceworks distributes a questionnaire to
firms about their IT usage across their establishments, including their NAICS industry
code, employment, location, and IT spending per location. We do our best to reconstruct
the capital categories in the ACES in the Spiceworks data and use the 2015 data to be as
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close as possible to the year for which we used the ACES data, 2013. The advantage
of the Spiceworks data is its broader coverage and the fact that it is collected at the
establishment level, not at the firm level. As such, the Spiceworks data aligns more
closely with the establishment focus of our analysis.

Table OA.4 replicates Table 1 using the Spiceworks data on the establishment level. We
directly use an indicator for Business Services establishments and the establishment’s
location density instead of considering the share of each firm that works in Business
Services or the average population density of a firm’s establishments.53 Employment
reflects the total employment of a firm across establishments to align with our Census
ACES data. Results are broadly consistent. However, coefficient magnitudes are slightly
attenuated compared to the Census ACES data, perhaps reflecting measurement error
or an unobserved imputation procedure.

Price Declines. Capital investment prices for equipment and intellectual property have
declined dramatically since 1980. The left and right panel of Figure OA.13 shows the
decline in the BEA price index for equipment and intellectual property between 1980
and 2018 in black, normalized by their 1980 levels, respectively. All price indices are
relative to the BEA PCE deflator. Figure OA.13 also shows that the vast majority of the
decline in both indices is due to declines in the price indices of information processing
equipment (among equipment capital) and software (among intellectual property).
Figure OA.13 shows why our paper focuses on IT capital, which combines information
processing equipment and software: the investment prices of non-IT capital have moved
very little since 1980, while the joint IT price index has declined dramatically.

C.3 Supporting Evidence for Section 1.4

The college share of employment in big cities increased sharply during the period under
study (see Diamond, 2016). Similarly, big cities are increasingly dominated by jobs
in so-called cognitive non-routine occupations (see Rossi-Hansberg et al., 2019). Such
urban-biased compositional changes in the workforce may explain part of the observed
urban-biased growth if it changes the composition of high-density cities toward higher-
paying jobs. In particular, Business Services were already among the most skill-intensive
sectors in the US economy in 1980, and they became even more skill-intensive by 2015.
In this section, we explore the role of such compositional changes.

We use the Census data because the LBD data lacks demographic information. Because
the Census is a survey and sectors are self-reported, the fraction of urban-biased growth
accounted for by each sector differs from the administrative data used in Figure 3.54

53We had to use these proxy measures in the ACES data, which is only available at the firm level.
54In particular, workers in high-skill service firms that own manufacturing or retail establishments

often misreport their sector as manufacturing or retail. For example, in the Supplemental Material, we
provide evidence that workers in Walmart’s headquarters systematically report their sector as NAICS-44
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The last column of Table OA.2 presents the share of urban-biased growth accounted for
by each 1-digit NAICS sector in the Census. Patterns are similar to the corresponding
decomposition in the LBD, see Figure 3: Business Services are by far the most significant
contributor to urban-biased growth, while the manufacturing sector is a negative
contributor; other sectors play virtually no role. Compared to the LBD data, the positive
contribution of the Business Services sector in the Census data is more positive, and the
contribution of trade and transport is negative but moderately so.

We introduce a decomposition of the difference in wage growth rates for 1980-2015
between high- and low-density commuting zones. The decomposition isolates a com-
ponent of wage growth in each location and sector due to skill deepening alone. This
”skill-deepening” component captures the wage growth that would have resulted had
the sector’s employment share and college wage premium remained constant at their
1980 values, but its college share of employment evolved as in the data.

To formalize this, we decompose wage growth in each location-sector similarly to what
we did in equation (1):

(OA.14) δℓs =
µℓst(wh

ℓst − wl
ℓst)∆µh

ℓst
w̄ℓt︸ ︷︷ ︸

Deepening

+ζℓs,

where ∆µh
ℓs denotes the change in the share of employment in sector s in location ℓ

accounted for by college-educated workers between t and t + 1, wh
ℓs denotes average

wages of college-educated workers in location ℓ and sector s, and wl
ℓs average wages

of worker without a college degree. As before, we use equation (OA.14) to compute
the share of urban-biased growth due to differences in skill deepening in each sector
across space and the share due to differential changes in the residual component across
regions.

The left two columns of Table OA.2 present the results from the decomposition in
equation (OA.14) for college- versus non-college-educated workers. The changing
composition of urban economies toward more educated workers explains about 35% of
urban-biased growth. Across sectors, the importance of education-deepening varies.
Skill-deepening within Business Services explains only about 16.3% of the aggregate
economy’s urban-biased growth. At the same time, skill-deepening only explains
slightly more than a tenth of all urban-biased growth in the Business Services sector.

Another recent line of work has studied the role of so-called cognitive non-routine
(CNR) occupations in trends in aggregate and local inequality (see Rossi-Hansberg et al.,

(Retail) instead of the actual NAICS-55 (Management). As a result, the number of NAICS-55 workers in
the Census microdata is substantially smaller than that reported in administrative data sources such as
QCEW or LBD data.
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2019). We apply the same decomposition in equation (OA.14) to CNR and non-CNR
workers instead of college and non-college workers. Columns 3 and 4 of Table OA.2
show occupational shifts within Business Services explain about 16.3% of all urban-
biased growth, while the residual term, which captures within-occupation wage growth,
explains the vast majority of urban-biased growth.

C.4 Additional Figures for Section 3

This section presents figures that show data moments that we use in the estimation of
our model in Section 3.

College Ratio and Firm Size. The CPS routinely asks workers about the size of the firm
they work for. We use this information to compute the college share across the firm-size
distributions. Figure OA.14 shows the share of college-educated workers within the
firm-size bins provided in the CPS data. In Business Services and other sectors, the
college share of employment is higher at larger firms. However, the college share of
employment for Business Services is about 15 percentage points higher for all firm sizes
than the average college share in the other sectors. Separately for each sector, we use
the coefficient on firm size in a regression of the log of the college share of employment
on log firm size to calibrate φs, the elasticity of substitution between high and low-skill
labor, as detailed in the text.

Commuting Zone Residential Rent Price Index. We construct a commuting zone rent
index. We constructed the index using microdata on reported gross rents and dwelling
characteristics from the US Census and ACS. We regressed the log of gross rents paid
by individuals based on the building’s age, the number of rooms, and a commuting-
zone-year fixed effect. We interpret the commuting-zone-year fixed effect as a rent price
index because it represents the price of a unit of observationally-equivalent housing in
each commuting zone. The top two panels of Figure OA.15 show the rent index across
commuting zones for 1980 and 2015.

C.5 Additional Figures for Section 4

This section presents exhibits that provide additional model outputs referenced as part
of our urban growth accounting exercise in Section 4.

Residential Rent Prices Across Commuting Zones in the IT-Only Economy. The
bottom left panel of Figure OA.15 shows residential rents across commuting zones in
our calibrated model in 1980. The residential rents are exactly as in the data in the top
left panel because we chose residential land supply to match the data on the commuting
zone-level residential rent price index exactly.

The bottom right panel of Figure OA.15 shows residential rents across commuting zones
in our counterfactual IT-only economy in 2015. The rent-density gradient increased
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markedly between the two years due to the decline in IT prices. In fact, in the IT-only
economy, the 2015 rent-density gradient is steeper than in the data, suggesting that other
forces unrelated to the IT capital investment price decline offset some of the gradient’s
steepening.

Large Firms and Urban-Biased Growth in the IT-Only Economy. Figure OA.17 repli-
cates Figure 4 in its top panel and displays the corresponding decomposition in our
counterfactual IT-only economy in the bottom panel. Large firms account for most
urban-biased growth in our IT-only counterfactual, as in the data.

However, the model is less successful at replicating the split into wage growth versus
employment growth in accounting for urban-biased growth. Relative to the data, a large
part of the urban-biased growth at large Business Services firms in the counterfactual IT-
only economy reflects differential employment growth across commuting zones rather
than differential wage growth. In the model, all firms within a location-sector pay the
same wage, while larger firms pay systematically higher wages in the data. Introducing
firm-specific labor-supply curves would allow our model to more accurately capture
the decomposition of large firm payroll growth into wage versus employment growth.
However, introducing and estimating firm-specific labor supply curves is outside the
scope of our paper.

Calibrated Amenity Residuals across Commuting Zones and Education Groups.
Figure OA.18 presents the calibrated location amenities in the model for 1980 and
2015, separately for college and non-college workers. For each education group, we
normalized amenities by the value of amenities of the New York commuting zone in
1980.

Additional Accounting Results in the IT-Only Economy. In the body of the paper,
we study how much of the increase in the wage-density gradient the IT-only economy
exhibits. Table OA.3 presents additional results and robustness checks. Column ”Only
A” shows the resulting wage-density gradient if only fundamental productivities change
from their calibrated values in 1980 to their calibrated values in 2015 while the IT price
and all other structural residuals remain constant at their 1980 levels. The wage-density
coefficient flattens due to rural-biased productivity growth for non-college-educated
workers, seen in Figure 12. Column ”Only B” shows the change in the wage-density
elasticity if only amenities had changed from their calibrated values in 1980 to their
calibrated values in 2015, while the IT price and all other structural residuals are held
constant at their 1980 levels. It shows that changes in amenities had no impact on
urban-biased growth.

The remaining columns show how much urban-biased growth the IT-only economy
can account for under alternative parameters. The Column ”Low Elast.” targets the
macro elasticity of substitution between capital and labor from Oberfield and Raval
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(2021), which leads to a firm-level elasticity of substitution between skilled labor and
capital of σs = 0.2. The Column ”High Elast.” targets the macro elasticity of substitution
between capital and labor from Karabarbounis and Neiman (2014), which leads to a
firm-level elasticity of substitution between skilled labor and capital of σs = 0.6. Finally,
the Column ”Equal Lab. Elast.” sets labor-supply elasticities equal across education
groups, with the spatial elasticity set to 4 and the sectoral elasticity set to 0.5, roughly
averages of our estimated values for both elasticities.
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TABLE OA.2: THE ROLE OF EDUCATION AND OCCUPATION

Share of Urban-Biased Growth

Panel A: Education Panel B: Occupation

Sector Deepening Residual Deepening Residual Total

Resources + Construction –0.3 10.1 –1.4 11.2 9.8
Manufacturing 12.4 –36.6 6.8 –31.0 –24.2
Trade + Transport 3.7 –13.8 0.7 –10.8 –10.1
Business Services 16.3 102.0 11.4 106.9 118.3
Education + Medical 1.8 1.0 –1.2 4.0 2.8
Arts + Hospitality 0.7 0.8 –0.1 1.6 1.5
Personal Services 0.2 1.7 0.1 1.8 1.9

Total 35.0 65.0 16.3 83.7 100.0

Notes: The table decomposes the difference in 1980-2015 wage growth between commuting zones with
above-median and below-median densities in 1980 into the contributions of each NAICS-1 sector and,
within each sector, into the contributions of different types of workers. The ”deepening” component
holds sectoral employment shares and average wages of workers fixed at 1980 levels and only varies
the college share (Panel B) of employment or the CNR-occupation share of employment (Panel B) in
each sector from its 1980 to its 2015 level. CNR stands for ”cognitive non-routine” occupation. Panel
A shows the share of urban-biased growth accounted for by each 1-digit NAICS sector decomposed
into an education deepening and a residual component. Panel B shows the share of urban-biased
growth accounted for by each 1-digit NAICS sector decomposed into a CNR-deepening and a residual
component. The underlying data come from the US Census Bureau’s 1980 Decennial Census and the
2015 American Community Survey. We compute the average wages of full-time, prime-age workers
within each commuting zone, sector, and occupation or education group for both years. We follow
Jaimovich and Siu (2020) and define CNR occupations with SOC-2 codes 11 to 29 and non-CNR
occupations as all other codes. We only consider private non-agricultural employment. We classify
above-median density commuting zones as the highest density commuting zones jointly accounting
for 50% of 1980 employment. All values are adjusted for inflation to 2015 dollars using the BEA PCE
price index.
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FIGURE OA.1: URBAN-BIASED GROWTH ACROSS DATASETS
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(B) Census/ACS
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(C) QCEW
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(D) County Business Patterns
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Notes: This figure shows wage growth between 1980 and 2015 across commuting zones (Tolbert and
Sizer, 1996) sorted into deciles of increasing population density across four different data sets. Each
decile accounts for one-tenth of the US population in 1980. Panel A uses data that comes from the
US Census Bureau’s Longitudinal Business Database and covers all US private, non-farm employer
establishments. Panel B uses data from the US Census Bureau’s 1980 Decennial Census and the 2015
American Community Survey. Panel C uses data from the Bureau of Labor Statistics’ Quarterly Census
of Employment and Wages. Panel D uses US Census County Business Patterns data, which contain
tabulated values from the Longitudinal Business Database. All values are adjusted for inflation to 2015
dollars using the BEA PCE price index.
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FIGURE OA.2: SPATIALLY-BIASED WAGE GROWTH

(A) Population Density
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(B) Population
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Notes: This figure shows wage growth between 1980 and 2015 across commuting zones (Tolbert and
Sizer, 1996) sorted in four different ways. Each decile accounts for one-tenth of the US population in 1980.
The underlying data come from the US Census Bureau’s Longitudinal Business Database and cover all
US private, non-farm employer establishments. Panel A replicates the original ordering of commuting
zones by initial population density. Panel B orders US commuting zones by initial aggregate population.
Panel C uses tract-weighted population density using 1990 data (the first year with complete coverage).
Panel D orders commuting zones by initial 1980 wage levels. All values are adjusted for inflation to 2015
dollars using the BEA PCE price index.
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FIGURE OA.3: THE US WAGE-DENSITY GRADIENT IN1950, 1980, AND 2015
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Notes: This figure shows average annual wages across commuting zones (Tolbert and Sizer, 1996) sorted
into deciles of increasing population density, separately for 1980 and 2015. Each decile accounts for one-
tenth of the US population in 1980. The underlying data come from the US Census Bureau’s Decennial
Census for 1950 and 1980 and the 2015 American Community Survey. Each decile accounts for one-
tenth of the US population in 1980. The first decile corresponds to 10 people/mi2 and the tenth decile
corresponds to 2300 people/mi2. We show all wages relative to wages in decile 1.

FIGURE OA.4: THE US WAGE-DENSITY GRADIENT OVER TIME
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Notes: This figure shows coefficients from a regression of log average wages on log population density
run separately for each year between 1975 and 2015 across US commuting zones (blue dots), weighted
by 1980 population. We use the US Bureau of Labor Statistics’ Quarterly Census of Employment and
Wages for wage data for private employers. Using US Census data, we measure each commuting zone’s
population density in 1980. The lines show the coefficients from quantile regressions at the 10th, 25th,
50th, 75th, and 90th quantiles each year. All values are adjusted for inflation to 2015 dollars using the
BEA PCE price index.
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FIGURE OA.6: AVERAGE WAGES
ACROSS COMMUTING ZONES BY SECTOR IN 1980 AND 2015

(A) 1980 Wage Gradient

Slope: 0.06

Slope: 0.07

20

40

80

160

1 10 100 1K 10K

Business Services
Other Sectors

(’0
00

 o
f 2

01
5$

)
A

ve
ra

ge
 W

ag
e

Commuting Zone Density
(1980 Population/mi2)

(B) 2015 Wage Gradient
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Notes: The figure shows the wage-density gradient across commuting zones for the Business Services
sector and the rest of the economy in 1980 and 2015. The figure uses 1980 US Decennial Census data
and 2015 American Community Survey data. Panel A shows the wage-density elasticity for both sectors
in 1980; the same gradient is shown in 2015 in Panel B. The size of the dots is proportional to the 1980
commuting zone population. All values are adjusted for inflation to 2015 dollars using the BEA PCE
price index.
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FIGURE OA.7: SECTORAL ORIGINS OF URBAN-BIASED WAGE GROWTH ACROSS
NAICS-2 INDUSTRIES
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Notes: The figure decomposes the difference in 1980-2015 wage growth between commuting zones with
above-median and below-median densities in 1980 into the contributions of each NAICS-2 sector. The
blue bars show the share of the wage growth difference accounted for by each sector (cf. equation (2)).
The underlying data come from the US Census Bureau’s Longitudinal Business Database and cover all
US private, non-farm employer establishments. We classify above-median density commuting zones as
the highest density commuting zones jointly accounting for 50% of 1980 employment. All values are
adjusted for inflation to 2015 dollars using the BEA PCE price index.
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FIGURE OA.8: IT INVESTMENT ACROSS NAICS-2 INDUSTRIES

0 500 1,000 1,500 2,000

Manufacturing 31

Health/Social 62
Education 61

Hospitality 72
Arts/Entertainment 71

Other Services 81

Transport/Warehouse 48
Retail 44

Wholesale 42

Construction 23
Utilities 22

Natural Resouces 21

Admin and Waste 56
Management 55

Professional Services 54
Real Estate/Leasing 53

Finance/Insurance 52
Information 51

(A) 1980
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Notes: The figure shows investment per worker for different information technology assets across 2-digit
NAICS sectors in 1980 and 2015. Data on capital investments in each sector are from the Bureau of
Economic Activity. Data on employment in each sector are from the Quarterly Census of Employment
and Wages. Proprietary software refers to BEA codes ENS2 and ENS3; pre-packaged software refers to
ENS1, and hardware to EP1A-EP31. Sectors appear in order of their contribution to urban-biased growth.
All values are adjusted using the BEA’s asset-specific investment-price deflators to 2015 dollars.
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FIGURE OA.9: EMPLOYMENT AND WAGES AT LARGE AND SMALL ESTABLISHMENTS
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Notes: The figure shows average wages by sector and establishment size across commuting zone deciles
ordered by increasing density for Business Services and all other sectors combined, for 1980 and 2015.
Each commuting zone decile accounts for one-tenth of the US population in 1980. The top row shows
average wages at large and small establishments across commuting zones ordered by population density
in 1980 and 2015 for Business Services (Panel A) and all other sectors (Panel B). The bottom row shows
employment shares within each commuting zone decile at large and small establishments across com-
muting zones ordered by population density in 1980 and 2015 for Business Services (Panel C) and all
other sectors (Panel D). In all four panels, the solid line represents 2015, and the dashed line represents
1980. The underlying data come from the US Census Bureau’s Longitudinal Business Database and
cover all US private, non-farm employer establishments. We compute average wages as average payroll
per worker by aggregating establishment payroll numbers and employment counts across all establish-
ments in a commuting zone and sector. Business Services establishments are those with employment
at establishments coded as NAICS 51, 52, 54, and 55; due to disclosure reasons, we omit NAICS 53 and
56. We classify large establishments as those with at least 200 employees, which account for 47% of all
employment in 1980 and 50% of all employment in 2015. All values are adjusted for inflation to 2015
dollars using the BEA PCE price index.
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FIGURE OA.10: THE ROLE OF LARGE FIRMS AND ESTABLISHMENTS FOR WAGE
CHANGES WITHIN COMMUTING ZONES
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(B) The Role of Large Establishments
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Notes: The figure decomposes wage changes within commuting zones (Tolbert and Sizer, 1996) sorted
into deciles of increasing population density into wage changes due to large and small firms (Panel A)
and large and small establishments (Panel B). Each decile accounts for one-tenth of the US population in
1980. The underlying data come from the LBD. We compute average wages as average payroll per worker
by aggregating establishment payroll numbers and employment counts across all establishments in a
commuting zone and sector. In the top panel, we classify establishments belonging to large firms as those
with at least 1,000 employees in their sector (Business Services versus Other Sectors). Such firms account
for roughly 44% of US employment in 1980 and 47% in 2015. To compute the decomposition, Business
Services firms are those with employment at establishments coded as NAICS 51, 52, 54, 55; due to
disclosure reasons, we omit NAICS 53 and 56 here. In the bottom panel, we classify large establishments
as those with at least 200 employees, accounting for 47% of all employment in 1980 and 50% in 2015. All
values are adjusted for inflation to 2015 dollars using the BEA PCE price index.
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FIGURE OA.11: AGGREGATE NON-IT INVESTMENT BY SECTOR

0 10 20 30 40 50
Investment per Worker (‘000 2015 $)

Manufacturing

Education + Medical

Arts + Hospitality

Personal Services

Trade + Transport

Resources + Construction

Business Services

2015

1980

2015

1980

2015

1980

2015

1980

2015

1980

2015

1980

2015

1980

Notes: The figure shows investment per worker for different non-IT capital assets across 1-digit NAICS
sectors in 1980 and 2015. Data on capital investments in each sector are from the Bureau of Economic
Activity. Data on employment in each sector are from the Quarterly Census of Employment and Wages.
We define non-IT capital as all non-structures capital except the following ”IT codes:” Proprietary software
refers to BEA codes ENS2 and ENS3; pre-packaged software refers to ENS1, and hardware to EP1A-EP31.
Sectors appear in order of their contribution to urban-biased growth. All values are adjusted using the
BEA’s asset-specific investment-price deflators to 2015 dollars.
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FIGURE OA.12: AGGREGATE WAGE AND EMPLOYMENT GROWTH
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Notes: The figure shows employment and average wages over time for all 1-digit NAICS sectors in the
US economy. The underlying data come from the Quarterly Census of Employment and Wages (QCEW).
The left panel shows employment relative to 1980 in Business Services in red and all other 1-digit NAICS
sectors in grey. The right panel shows average wages relative to 1980 in Business Services (red) and all
other 1-digit NAICS sectors (grey).

FIGURE OA.13: INVESTMENT PRICE INDICES FOR EQUIPMENT CAPITAL AND
INTELLECTUAL PROPERTY
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(A) Equipment Prices
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(B) Intellectual Property Prices

Notes: The figure shows investment prices for different types of capital between 1980 and 2015. The
underlying data series come from the BEA asset price tables for 1980-2018. We show all price series
relative to the BEA PCE deflator. The left panel shows the investment price series of equipment capital
and its four subcomponents, and the right panel shows the investment price series of intellectual property
and its three subcomponents.
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FIGURE OA.14: EDUCATION AND FIRM SIZE
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Notes: The figure shows how the college share of employment varies with firm size in Business Services
and the rest of the economy in 1992. The underlying data come from the US Census 1992 Current
Population Survey. We drop employees working more than 168 hours per week and part-time workers
who worked less than 30 hours in a ”usual” week. We classify workers with more than a bachelor’s
degree as ”college-educated” and all other workers as ”non-college.” For each firm size bin, we compute
total employment across all respondents and then show the fraction of these respondents with a college
degree.
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FIGURE OA.15: RESIDENTIAL RENTS ACROSS COMMUTING ZONES
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(A) 1980 Data
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(B) 2015 Data

Slope:   0.09

1

1/2

2

1/4

1 10 100 1K 10K

R
el

at
iv

e 
to

 N
ew

 Y
or

k
R

en
t I

nd
ex

Commuting Zone Density
(1980 Population/mi2)

(C) 1980 - Model
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(D) 2015 - Model

Notes: The figure shows a scatter plot of residential rent price indices against commuting zone density
for 1980 and 2015 in the data and the IT-only economy. The 1980 data come from the US Decennial
Census, and the 2015 data from the American Community Survey. We construct the rent price index as
commuting-zone-year fixed effects in a regression of residential rents on housing characteristics. The
model data comes from a counterfactual economy in which only the investment price of IT and the
aggregate share of college workers change, as in the data. Panels A and B show data for 1980 and
2015; Panels C and D show rental indices in the model for 1980 and 2015. We show indices relative to
the value of New York in that year. We show fitted lines with 95% confidence intervals. The size of a
dot is proportional to the commuting zone population. Note that data and model coincide in 1980 by
construction.
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FIGURE OA.16: THE DECLINE OF THE IT INVESTMENT PRICE INDEX BY SECTOR
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Notes: The figure shows the investment price for IT capital in Business Services and the rest of the economy.
The figure uses data from the BEA Fixed Assets Tables to compute the Idea Chained IT Cost/Price index
relative to BEA PCE Chained Price Index, normalizing the price index to 1 in 1980. We compute a sectoral
ideal (Fischer) price index, taking the geometric average of the Laspeyres and Paasche price indices. We
do so separately by sector because different sectors have different weights for various equipment types.
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FIGURE OA.17: URBAN-BIASED GROWTH AND ESTABLISHMENT SIZE IN MODEL AND
DATA

(A) Data
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(B) Model
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Notes: The figure decomposes the difference in 1980-2015 wage growth between commuting zones with
above-median and below-median densities in 1980 into the contributions of large and small establish-
ments within each NAICS-1 sector, separately in data and model output. The 1980 data come from the US
Decennial Census, and the 2015 data from the American Community Survey. The model data comes from
a counterfactual economy in which only the investment price of IT and the aggregate share of college
workers change, as in the data. The blue bars show the share of the wage growth difference accounted
for by each sector and establishment type (cf. equation (2)). The red bars decompose the blue bars into
the separate contributions of within-industry wage growth, across industry relocation, and a covariance
term (cf. equation (3)). The green bars decompose the blue bars into a component due to wage growth
differences if all commuting zones had the same sectoral employment shares and a residual component
(cf. equation (4)). We classify above-median density commuting zones as the highest density commuting
zones jointly accounting for 50% of 1980 employment. We classify large establishments as the largest
establishments jointly accounting for 50% of 1980 employment, leading to an employment cutoff for large
firms of 108 employees. All values are adjusted for inflation to 2015 dollars using the BEA PCE price
index.
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FIGURE OA.18: AMENITIES IN THE MODEL
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Notes: The figure shows the calibrated amenity residuals across commuting zones (Tolbert and Sizer,
1996) in 1980 and 2015, separately for each sector and education group. Each dot represents a commuting
zone-, education-, and year-specific amenity term. The size of each dot is proportional to the commuting
zone population. Amenities are normalized to 1 for New York in 1980 for each education group.
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TABLE OA.3: URBAN-BIASED GROWTH ROBUSTNESS EXERCISES

Data Struc. Resid. Subs. Elas. Equal Labor

1980 2015 Prod. Amen. High Low Supp. Elast.

Business Services 0.070 0.154 -0.027 0.071 0.212 0.100 0.147
Other Sectors 0.060 0.070 0.054 0.060 0.073 0.066 0.068
Aggregate 0.063 0.102 0.042 0.063 0.147 0.078 0.099

∆ Aggregate 0.039 -0.021 -0.002 0.084 0.015 0.038

Notes: This table shows the regressions of log average wages on log population density in the cross-
section of US commuting zones in the data and in various counterfactual economies. Note that the
1980 cross-section is the same in the data and the IT-Only economy. The ”data” columns come from
the 1980 Decennial Census and the 2015 American Community Survey. Column 3 shows the wage-
density elasticity in 2015 if only productivity residuals had varied and all other structural residuals and
parameters were fixed at their 1980 values. Column 4 shows the wage-density elasticity in 2015 if only
amenity residuals had varied and all other structural residuals and parameters were fixed at their 1980
values. Column 5 shows the wage-density elasticity in 2015 in the IT-only economy exercise; however,
we calibrate the elasticity of substitution between firm varieties to match the aggregate labor-capital
elasticity from Karabarbounis and Neiman (2014). Column 6 shows the wage-density elasticity in 2015 in
the IT-only economy exercise; however, we calibrate the elasticity of substitution between firm varieties
to match the aggregate labor-capital elasticity from Oberfield and Raval (2021). Column 7 shows the
wage-density elasticity in 2015 in the IT-only economy exercise; however, we set labor supply elasticities
for college- and non-college-educated workers equal to the mean calibrated elasticity for these groups so
that both groups have the same elasticity.

TABLE OA.4: IT EXPENDITURE, POPULATION DENSITY, AND ESTABLISHMENT SIZE IN
THE SPICEWORKS DATA

IT Expenditure/Worker (x $1,000)

(1) (2) (3) (4) (5) (6)

Log Population Density 0.237∗∗∗ -0.0222∗∗ 0.232∗∗∗ 0.132∗∗∗

(0.0124) (0.00847) (0.0242) (0.0295)
Log Employment 0.356∗∗∗ 0.288∗∗∗ 0.317∗∗∗ 0.454∗∗∗

(0.00914) (0.0124) (0.0344) (0.0343)
Log Density × Log Emp. 0.00878 -0.0319∗∗∗

(0.00728) (0.00722)
Business Services 0.368∗ 2.774∗∗∗ 1.334∗∗∗

(0.165) (0.0679) (0.239)
× Log Density 0.551∗∗∗ 0.252∗∗∗

(0.0337) (0.0486)
× Log Emp. 0.144∗∗∗ -0.243∗∗

(0.0182) (0.0787)
× Log Density × Log Emp. 0.0739∗∗∗

(0.0165)

Establishments 2,872,954 2,872,954 2,872,954 2,872,954 2,872,954 2,872,954
R2 0.000 0.005 0.002 0.007 0.002 0.007

Notes: Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. The table shows a regression
of establishment-level IT expenditure per employee (in thousands of 2013 dollars) on the log of an
establishment’s average commuting zone population density, the log of the establishment’s employment
size, and a dummy variable for whether it is a Business Services establishment. The data come from the
2015 Spiceworks data, also known as Harte-Hanks Market Intelligence dataset. All values are adjusted
for inflation to 2015 dollars using the BEA PCE price index.
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