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Abstract

In US Census microdata, local employment growth is very persistent. The new firm

margin plays the dominant role in this persistence. Firms do not exit at different rates

across space, and the composition of firm types does not change as areas grow. I em-

bed these findings in a model of spatial growth, and estimate that the new firm margin

can act as a significant multiplier for local shocks. New firms raise labor demand, in-

crease local spending and attract new workers, who in turn increase the demand for

new firms. This process working in reverse appears crucial to explain the decline of

the US Rust Belt.
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1. INTRODUCTION

There is a large amount of variation in long-run employment and wage growth at the
local level.1 Some places grow quickly for many years, and some stagnate. This paper
offers new evidence that a “startup multiplier” is crucial to understanding these persistent
differences.

I begin by using U.S. Census microdata to document three facts about firm creation and
local growth. First, places with high initial startup rates see long periods of growth in
employment and wages. Second, most of this growth is accounted for by the continued
entry of new firms. Startup rates are very persistent, and local incumbents uniformly
shed employment as a group. Third, as places grow larger, they do not become more
likely to host fast-growing firms. Firms and establishments in dense areas do not grow
faster, exit faster, or see divergence in wages or sales per worker. The firm lifecycle is
mostly invariant across space.

Rationalizing persistent differences in firm creation is then the primary task in explaining
local growth. In this paper, I study the role new firms play in propagating local shocks. I
present a simple dynamic model of monopolistic competition and specialization in space.
In the model, a new firm brings a new idea or product to the area, which raises local
productivity. This increases wages, and attracts more workers to the area. In turn, these
new workers increase demand for all local firms, spurring the creation of new entrants.

The feedback between firm creation and labor mobility helps explain how both growth
and entry at the local level can be so persistent. To an extent, local booms can feed them-
selves. New firms create externalities for other entrants through their effect on local de-
mand. In this way, shocks to locations are multiplied and propagated by the process of
firm creation.

As an example, consider the growth of Deschutes County, in central Oregon. Formed in
1916, Deschutes became known in the early 1990’s for its outdoor lifestyle and environ-
mental amenities, attracting a host of new residents.2 A larger population needed new
restaurants, retail outlets, and medical services, all of which saw a 300% increase in new
establishments between 1990 and 2015. All this new business activity raised the demand
for professional and technical services: architects, lawyers, and accounting firms saw a
six-fold increase in new business formation, with finance and insurance not far behind.

1From 1975-2015, mean cumulative employment growth at the commuting zone level was 108%, with a
standard deviation of 105%. More detail is given in Appendix A.1.

2The population grew from 76,000 in 1990 to 174,000 in 2015. The Economist (2007, Jan 25th) credits the
end of the county’s logging industry for the initial boom in those searching for outdoor lifestyles.
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Construction, specialized manufacturing, and transportation all saw entry rates far above
state and national trends. Wages rose abruptly, and employment growth rates among the
highest in the nation have been sustained for many years.

However, the same process can run in reverse, particularly when a place is exposed to
macroeconomic shifts. Gary, Indiana, was incorporated by the U.S. Steel Company in
1906, and experienced strong population growth for decades on the back of rising steel
output. In the 1970’s, falling global demand for steel and heightened foreign competition
led to large reductions in local steel-making employment (Tarr, 1988). This decline was
accompanied by a collapse in business formation across a broad range of industries. The
population began to shrink, and Gary continued to experience losses in employment and
population long after steel-making employment stabilized.

The theory I develop provides a qualitative account of such persistent, creation-fueled
propagation. I then estimate the strength of propagation using microdata for the full U.S.
geography. In order to estimate the model I face a central identification challenge. Firms
are forward looking, and unobserved shocks that affect future local growth will also affect
their startup decisions. This confounds a naive causal interpretation of the correlation
between entry and future growth.

To gain identification, I expand on Gary’s experience, and isolate a series of demand
shifters for firm creation driven by aggregate structural change. The U.S. has seen a large
decline in manufacturing employment in recent decades. This decline had a significant
local dimension: areas specialized in manufacturing activity in 1975 saw much slower
growth in total employment over the subsequent 40 years. I show new evidence that these
regions also saw reduced rates of firm creation across all sectors, and particularly in sec-
tors that catered to local demand.

I use the structure of the model to provide a set of moment conditions for estimation,
exploiting a counterfactual prediction for local demand were the only changes since 1975
to have come from an aggregate shock to manufacturing. These conditions are used to
estimate the key structural parameters of the model (see Adao et al. (2019) , Allen et al.
(2019), and Faber and Gaubert (2019) for similar strategies).3

There are two key results. First, the estimated model attributes an important role for the
startup multiplier in explaining local employment and wage growth. The effect of a 1%
shock to local productivity is multiplied almost two-fold over the medium term by startup

3This strategy also relates to the widespread use of Bartik industry shocks in reduced form work. How-
ever, it is distinct in that it fully specifies the mechanisms by which aggregate structural change impacts
the macroeconomy and local activity, and is transparent about what the moment conditions require for
identification of structural parameters.
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dynamics for both employment and wages. Moreover, there is substantial feedback be-
tween labor mobility and startup dynamics: shutting down movement of people across
space lowers the local wage growth attributable to firm creation by almost half. Newcom-
ers generate local demand that spurs new firm creation, productivity and wage growth,
and more labor demand.

Second, I apply the model to understand the decline of the US Rustbelt. The model reveals
that a start-up deficit has amplified the employment gap between the Rustbelt commuting
zones and the growing regions of the U.S. by almost 50% in the last four decades. This
indirect effect has been almost as important as the direct shock to manufacturing that
started the decline of the Rustbelt. The relative decline of employment growth and the
resulting distressed state of former manufacturing areas is in part due to a collapse in
business formation in the service sector, which has greatly multiplied the initial shock.

Related Literature.

A small number of papers have studied the contribution of firm creation to local growth
(see Glaeser et al. (2010); Gourio et al. (2016); Carlino and Drautzburg (2017)). Glaeser
et al. (2015) instrument for the presence of startups with the locations of historical mines,
and find an important role for startups in explaining cross-sectional patterns of growth.
This paper is also related to the work of Peters (2016), who considers the relationship
between shifts in factor supplies and firm entry using data on the large-scale reallocation
of German refugees after World War 2. A similar mechanism is at work there: inflows of
people into a location will act as a spur to the demand for new firms, and via increasing
returns raise wages in the long run.

The dynamic theory I propose has a long tradition in economic geography. Myrdal (1957)
discusses a process of “circular causation”, where local shocks are amplified by invest-
ment and local demand, in what is perhaps the earliest verbal description of the core
idea in this paper. A similar logic is at work in the canonical geography model of Krug-
man (1991). However, explicit modeling of growth dynamics has been limited outside of
stylized, stationary environments4 (notable exceptions are Desmet et al. (2018) and Nagy
(2017), who develop rich models of spatial innovation and production). This has con-
strained the extent to which one could discuss the dynamic effects of firm creation, and
just as importantly, the ability to measure these effects with new micro-data sets. The the-
ory here models non-stationary environments with a rich geography, and is more suited
to empirical analysis.

4See influential early work in Black and Henderson (1999), Fujita and Thisse (2003) and reviews in
Duranton and Puga (2014). A recent paper by Greaney (2019) studies the distributional consequences of
local growth in quantitative settings with asset accumulation.
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My work also relates to a broad literature dealing with the decline of manufacturing in the
U.S. (see Fort et al. (2018) for a review). While incorporating aggregate structural change
into the model disciplines the quantitative estimates, it also provides novel insights into
how structural change operates. The firm creation margin amplifies and propagates the
local decline of manufacturing, hastening the reallocation of workers across space. This
indirect effect is common in stories in the popular press, but absent from most economic
models.

2. DATA: STARTUP DYNAMICS AND LOCAL GROWTH

In this section, I document three central facts about local growth and firm creation. These
facts show that variation in the firm creation margin is central in accounting for differences
in growth across space.

The analysis uses the U.S. Census’ Longitudinal Business Database (LBD), which contains
information on every private employer establishment in the U.S. since 1978. In particular,
it contains information on annual employment, annual payroll, 6-digit industry and the
address of each establishment, along with longitudinal links at the firm level that allows
me to track a record of ownership. I add new information on sales from the Business Reg-
ister to this dataset, following Moreira (2015) and Haltiwanger et al. (2016). The Business
Register is the Census’ master establishment list for every establishment in the U.S., and
contains information on the revenues of the parent companies from IRS administrative tax
data. These sales are only available at the firm level, and I discuss in the Appendix several
methods of apportioning sales among establishments for multi-establishment firms.

I focus on two primary local geographic units throughout the paper: commuting zones
and counties.5 Both form a complete partition of the U.S. geography, and cover large
and small cities, towns, and rural areas (in contrast to administrative boundaries such as
Metropolitan Statistical Areas). The documented facts and results do not depend materi-
ally on the choice of geography.

5First constructed by Tolbert and Sizer (1996), commuting zones are now widely used in empirical work
for studying economic activity across space (see e.g. Autor and Dorn (2013)). They are defined as groups
of contiguous counties which see high proportions of cross-county commuting flows between the group. I
use the 703 commuting zones defined by the U.S. Census for the year 2000 throughout, though results are
robust to using 1980 and 1990 borders.
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Figure 1: Future Employment Growth and Initial Start-up Percentage
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Note: This figure plots the coefficients of regressions of 10-year county-level (blue) and commuting zone-
level (green) employment growth on dummies for 20 quantiles of the initial start-up percentage, for the
period 1980-2015. Employment growth is calculated as total percentage change in headcount at establish-
ments in the area between any two years. Start-up percentage is the fraction of local establishments of age
zero or one. 95% confidence intervals in grey. N = {9, 200; 2, 100} for the county and commuting zone level
respectively, where these counts have been rounded to accord with U.S. Census disclosure rules.

Fact 1: Places with high initial start-up rates experience high long-term

growth in employment and wages.

I first use the LBD to calculate local-level measures of employment and total wage bill
by aggregating establishment-level headcount and payroll in each year. This gives both a
county and commuting zone panel for the full U.S. geography. In Figure 1, I regress 10-
year forward log changes in employment at the local level on 20 quantiles of the startup
percentage at year t, for the decades beginning in 1980, 1990 and 2000. I define the start-
up percentage as the fraction of establishments in that location who are of age 0 or age
1 in year t. Employment growth varies substantially among these quantiles. In areas
with high numbers of startups, employment growth is predicted to be almost 30% over
the subsequent ten years. This drops to around 10% for areas with a low proportion of
startups.

In Table 2 in Appendix A.2 I reestimate this relationship with various controls, including
local industry shares and local fixed effects. I then restrict the analysis to true new firms
by excluding new establishments from existing, multi-establishment firms. Furthermore,
I show an estimate of the conditional distribution using quantile regressions. The con-
clusion is unchanged: there is a strong positive relationship between future employment
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Figure 2: Entrant Contributions to 10-Year Employment Growth
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Note: This figure plots the contributions to future 10-year employment growth at the commuting zone level
by successive cohorts of entrants, as well as current incumbents. Areas are assigned in each year to 10 deciles
of the startup percentage over all years. Decomposition is as in equation (1). Years are from 1990-2015 (for
example, 10-year growth for 1990 is taken for the period 1980-1990). N = {24, 000}, where this count has
been rounded to accord with U.S. Census disclosure rules.

growth and the initial start-up percentage.

I finally show that the same is true for average wage growth in Table 3 in Appendix A.3.
Over a ten year horizon, commuting zones with an initial startup rate in the upper quartile
of the distribution will see average wage growth that is 8 percentage points faster than
commuting zones in the lower quartile.

Similar findings have also been documented by Faberman (2011), who uses a more re-
stricted dataset from the BLS and focuses on variation in employment growth at the MSA-
level. My analysis here is complementary, extending the results to a more comprehensive
set of geographies and firms, and including measures of wages.

Fact 2: All growth in employment comes from the continued entry of new

establishments.

One question that immediately arises in connection with Fact 1 is how much the initial
startups are themselves contributing to the 10-year periods of growth documented above.
I first answer this question in an accounting sense. I decompose 10-year forward em-
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ployment growth rates at the commuting zone level into separate contributions from each
cohort of new establishments that enters during these ten years, as well as a contribu-
tion from incumbent establishments. Formally, we can write the percentage change in
employment at the commuting zone level between year t − 10 and t as

(1)
Empi,t − Empi,t−10

Empi,t−10
=

Ii,t − Ii,t−10

Ii,t−10
+ ∑

a∈{0,1,..,10}

Na
i,t

Empit−10
,

where Na
i,t is the total employment at time t in commuting zone i of firms of age a, and

Ii,t is the total employment at time t in commuting zone i of incumbents who existed 10
years prior to time t. By this definition, incumbents may add or subtract from 10-year
employment growth, but since new firms do not exist 10 years prior, their employment at
the end of the period only adds to total growth. I then average each of these contributions
to employment growth within deciles of the start-up percentage at the commuting zone
level 10 years beforehand. The results are plotted in Figure 2.

Two key points are apparent. First, areas that have high startup rates in a given year con-
tinue seeing strong employment growth from new cohorts of startups in each one of the
subsequent 10 years. While the contribution of any one year’s startups to 10-year em-
ployment growth is minor, they accumulate over time. This illustrates a key feature of the
startup rate at the local level: it is persistent, and this persistence generates large differ-
ences between high and low startup areas over time. To highlight this point, in Appendix
A.4 I show estimates of the autocorrelation of the local startup rate. For commuting zones,
this yields values of 0.70 at a 1 year lag and 0.54 at a 10-year lag.

Second, incumbent firms who existed at the start of the period uniformly subtract from
10-year growth as a group. While this masks a large amount of heterogeneity at the micro
level (some of these incumbent establishments exit, some grow fast and some plateau),
what matters for employment growth is the total change in employment for incumbent
firms. This is robustly negative, recalling Haltiwanger et al. (2013).

Just as importantly, this negative contribution varies only slightly over the deciles of the
startup fraction 10 years beforehand. Essentially, most of the difference between high
startup areas and low startup areas is that the former continue seeing strong employment
growth from the creation of new establishments, while incumbent employment shrinks
at roughly the same rate across areas. In particular, the exit rates of incumbent establish-
ments across space are unrelated to both the growth rate of the local area, and the initial
startup percentage. In Figure 3 I plot the average 10-year employment growth of com-
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Figure 3: Local Growth and Local Exit
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Note: This figure compares 10-year employment growth at the commuting zone level to the 10-year exit
rate of establishments. Deciles of employment growth split commuting zones into 10 ranked bins of 10-year
employment growth. The 10-year exit rate is the fraction of establishments present in the commuting zone
at year t which are no longer present in year t + 10. Years are from 1990-2015 (for example, 10-year growth
for 1990 is taken for the period 1980-1990). N = {24, 000}, where this count has been rounded to accord
with U.S. Census disclosure rules.

muting zones average within 10 deciles of Employment growth. The dispersion is large:
10-year employment growth ranges from over 50% in the highest decile, to -10% in the
lowest. Nevertheless, across all 10 cells, the 10-year exit rate of establishments is essen-
tially constant, ranging between 53% and 55%. Establishments exit at almost the same
rate across space.

In unpacking these dynamics, one might suspect that as areas become more populated,
they attract or produce different, potentially faster-growing establishments and firms. Ja-
cobs (1970) argued in her seminal work that large cities facilitate idea spillovers, and most
novel ideas come from dense urban areas. This hypothesis is canvassed by a variety of
influential work in urban economics, including Glaeser et al. (1992), Duranton and Puga
(2001) and Davis and Dingel (2019). One might then expect that firms and establishments
born in a large city like New York would outperform those born in Cleveland OH, condi-
tional on industry.
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Fact 3: The firm lifecycle is invariant across large and small areas

I break this statement into two parts. I first show that neither firms nor establishments
grow their employment faster in larger areas, conditional on survival. I then show that
differences in survival patterns are negligible between large and small areas. In the Ap-
pendix I show that average wages and average sales mirror employment patterns.

Fact 3a: Conditional on survival, establishments and firms grow no faster in larger areas.

To show this, I calculate employment growth as log changes in employment from the
previous year, for the full sample of establishments in the LBD. Note that this is only
observed if the establishment survives from one year to the next. I then estimate the
following equation:

(2) ∆yit =
A

∑
a=1

γaIAgeit=a +
A

∑
a=1

βaIAgeit=a × log(Popi) + Indi + µt + X ′
itδ + ϵit,

where ∆yit is log change in employment of the establishment from year t − 1 to t, and
IAgeit=a is a full set of age dummies, up to a maximum age A which I set at 15 years.6

The vector of coefficients {γa}A
i=1 documents how establishment growth varies with age,

conditional on survival.

To measure systematic growth differences across space, the second set of coefficients {βa}A
i=1

measures the interaction of age with the log of population at the local level (log(Popi)) in
the year the establishment hires its first employee. It thus describes whether establishment
growth rates vary systematically with area population size across the firm life cycle.7

Finally, Indi are industry fixed effects at the 4-digit NAICS level, exploiting the longitu-
dinally consistent industry codes for the LBD made available by Fort and Klimek (2018).
These fixed effects capture systematic mean growth rate differences across detailed indus-
tries. µt are aggregate time fixed effects and Xit are controls for multi-establishment firm
and state fixed effects.

The results are shown in Table 4 in Appendix A.5. The first column restricts βa to be
equal for all ages, and finds no significant differences in establishment growth rates across
space. Figure 4 uses these estimates to plot the growth rates by age for establishments

6After 15 years, more than 80% of the establishments in the LBD have exited. Varying the maximum age
A does not change the conclusions of this section.

7Using population density (people per square mile) in the local area instead of population size does not
affect the conclusions of this section.
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Figure 4: Establishment Employment Growth Rates by Age and Location Size
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Note: This figure plots the estimated employment growth rates of establishments by age above the baseline
of age 15 in three different categories of population size, using the coefficients obtained from estimating
equation (2) in the LBD. 95% confidence intervals in grey. N = 104, 000, 000, where this count has been
rounded to accord with U.S. Census disclosure rules. For reference, the average growth rate of 15 year old
establishments conditional on survival across industries is -1.3%.

Figure 5: Exit Rates by Age and Location Size
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Note: This figure plots the (unconditional) probability of exiting by age for all establishments born between
1980 and 1995, split by being born in three different categories of CZ population size. These probabilities
are increments of Kaplan-Meier survival functions estimated for 10 deciles of commuting zone size (full
output is reported in Appendix A.8) The three categories reported here correspond to decile 2, 5 and 10.
N = 70, 000, 000, where this count has been rounded to accord with U.S. Census disclosure rules.
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located in three size classes of commuting zone. Growth in employment is rapid for young
firms, before quickly leveling out with age, recalling results presented in Haltiwanger
et al. (2013). However, growth is not correlated with the population of the area in which
the establishment is located.

The second and third columns of Table 4 in Appendix A allow the interaction terms in βa

to vary by age. While this introduces some noise into the parameter estimates, the esti-
mated growth rates are not systematically higher in denser areas. Figure 23 in Appendix
A uses these estimates to again plot the growth rates by age for establishments located
in three size classes of commuting zone. No systematic difference over an establishment
lifetime is detectable between large and small areas, conditional on survival.

The analysis for firms is complicated by the fact that firms can own several establish-
ments, and exist at multiple points in space. Defining the current location of such multi-
establishment firms is not straightforward. Though relatively few in number, these firms
account for large fractions of employment and output, and cannot be ignored.

Nevertheless, we can ask a related question. Most multi-establishment firms begin life
with a single establishment, allowing a well-defined notion of the birthplace of the firm. I
test whether firm growth over the lifecycle (conditional on survival) is correlated with the
population of the firm’s birthplace. I follow standard practice by defining firm age as the
age of the oldest establishment the firm owns at birth, from which point the firm ages nat-
urally. The results and further detail are given in Appendix A.5. As with establishments,
I find that firms born in more populous locations do not grow systematically faster over
their lifecycle.

Fact 3b: Differences in exit rates by age across large and small areas are negligible.

To show this, I examine the exit decisions of establishments non-parametrically as a func-
tion of age. I take all establishments born between 1980 and 1995, and follow them until
2015. I estimate Kaplan-Meier survival functions for these establishments, split by the lo-
cal size of the area in which the establishment is born. Exit rates by age are taken from the
increments in the estimated survival functions.

In Figure 5, I plot the exit rates for establishments, split by the same size classes of com-
muting zone as Figure 4. These are almost identical over the sample period; exit rates are
on average less than 0.1% higher for each age for establishments in a commuting zone
above the median size. In Appendix A.8 I show the estimated survival functions, as well
as further detailed breakouts by size category. The conclusion continues to hold: entry
rate differences across areas of different population sizes are negligible. Over a 20 year
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Figure 6: Establishment Employment By Age and Location Size
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Note: This figure plots average employment by age for establishments, split by deciles of the population
of the commuting zone in which they were born. Commuting zone decile is calculated using data for
commuting zone populations from the NBER intercensal county estimates and commuting zone definitions
from the U.S. Census for the year 2000. N = 125, 000, 000, where this count has been rounded to accord with
U.S. Census disclosure rules.

time span, differences in exit probability are less than 2% between the most populous
areas and the least, out of an average exit rate of 81%.

Facts 3a and 3b combined suggest establishment scale within industries evolves in par-
allel across areas of different sizes. A sense of this can be gained from Figure 6, where I
plot the log of average establishment employment by age across 10 deciles of commuting
zone size.8 Without additional controls, it indeed appears as if growth in establishment
scale by age is unrelated to the population of the local area (though establishments are
systematically larger in more populous areas). I show this more rigorously for employ-
ment, average wages and sales per worker in Appendix A.6, using the same controls and
specification as in equation (2).

3. A MODEL OF FIRM CREATION AND LOCAL GROWTH

I now describe a simple model of local growth, where firm creation generates persistent
growth differences across areas. In the model, firms are created in response to local profit
opportunities. A new entrant pays a fixed cost to bring a new product to an area, and in

8Each of these deciles contains 10% of the U.S. population in the year 2000. A summary is provided in
Table 5 in Appendix A.7.
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doing so raises local productivity. High productivity increases labor demand and wages
locally, and attracts new workers to the area. In turn, higher spending drives demand for
new local firms.

This logic generates a dynamic interaction between the decisions of entrants and the lo-
cation decisions of workers, causing persistent differences in growth across space. The
strength of propagation depends crucially on the availability of land supply. Places where
it is easier to build new housing for workers will see greater inflows of workers in re-
sponse to an increase in wages, and hence a stronger impact on local demand.

Though stylized, the model is rich enough to be estimated directly on the microdata, and
I use it to quantitatively assess the importance of firm creation and new varieties to lo-
cal growth. In this section I present the model, and in the following one I discuss the
estimation strategy.

3.1 General Environment

Time is continuous. There are a discrete number of fixed locations j = {1, ..., J}. Regions
are characterized by an amenity level Aj,t and a productivity Bj,t.

Consumer Preferences. There are three classes of agents in this economy. First, there
is a mass Lt of workers. These workers have preferences over final goods and housing
services, given by a Cobb-Douglas period utility function

(3) UW
j,t = Cα

t H1−α
t Aj,t ,

where Ct is consumption of a homogenous final good, Ht is housing services and Aj,t is
a location specific amenity. Workers are freely mobile in each instant, and so choose the
location that maximizes instantaneous utility. Workers cannot save. They supply their
labor inelastically for a competitive wage wj,t when in location j at time t.

Second, in each location there is a unit mass of identical capitalists. These capitalists can-
not move. They consume only the final consumption good, and have intertemporal pref-
erences given by

(4) UE
t = Et

∫ ∞

t
e−ρs (C

E
s )

1−γ

1 − γ
ds,

for γ ≥ 0. These capitalists own all the firms in their location, and receive dividends from
their operations. They also finance the creation of new firms in their location in order to
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maximize their intertemporal utility. They may not invest in other locations.9

Third, there is a mass of landlords living in each location. They own an amount of housing
real estate, hj, and an amount of commercial real estate K. They too cannot work or move,
and consume only the income from their property holdings through purchases of the final
good.

Production. In each location, there are firms producing intermediate inputs used in pro-
ducing the final good. I assume each firm produces a single intermediate variety, and
a firm only exists in one location fixed at the time of birth. After entering, firms cannot
move. Final good output is produced by competitive firms in each location, which aggre-
gate all intermediate inputs in that location according to

(5) Yj,t =

(∫ Nj,t

0
y

σ−1
σ

j,t (i)di
) σ

σ−1

,

where yj,t(i) is the use of variety i in location j at time t, and Nj,t is the number of interme-
diates firms in the local economy. This final good is freely traded across locations, and so
commands the same price everywhere. It serves as the numeraire.

Each intermediate firm i is characterized by an idiosyncratic efficiency term z̃. Its pro-
ductivity depends both on a local productivity shifter Bj,t and its efficiency z̃. It produces
according to qj,t(i) = Bj,tz̃t(i)l(i),where l(i) is employment of labor. Standard aggregation
results for monopolistic competition imply that the wage in location j depends on three
local state variables, according to

(6) wj,t =
σ − 1

σ
Bj,t
(
Z̄j,tNj,t

) 1
σ−1 ,

where Z̄j,t measures the average efficiency of the firms in location j at time t. For ease
of notation and without loss, I work with a scaled version of firm efficiency, defined as
z ≡ z̃σ−1. Then Z̄j,t is defined as Z̄j,t ≡

∫ ∞
0 zdMj,t(z) , where Mj,t(z) is the probability

measure of firms with efficiency z at time t in location j.

Note from equation (6) that there are increasing returns to scale in the number of local
firms Nj,t, due to the specialization effect common to many economic geography models
(see e.g. Krugman (1991)).

Firm Dynamics. Starting a firm requires paying a fixed set up cost in the form of pur-
chasing a building. Upon paying the cost, the new firm will draw its efficiency from a

9In Appendix C I consider an alternative formulation with a representative capitalist who owns all firms
in all locations. The long run implications are identical, but short run dynamics feature some differences.
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distribution G(z) that is independent of location, and commence operation. The building
cannot be sold once the firm begins operation, and as such there is no endogenous exit
choice to consider.

Firms grow over time through shocks to their idiosyncratic efficiency. If a firm receives a
shock, they see their efficiency change proportionally from z to ∆iz, where ∆i ∈ {∆u, ∆d}.
Their efficiency either improves when receiving ∆u > 1, in which case they expand pro-
duction, or falls with ∆d < 1. Shocks arrive at a constant Poisson rate ϕi ∈ {ϕu, ϕd}.
Lastly, firms die at constant rate δ, independent of size or location. The mass of local
intermediates firms evolves according to

Ṅj,t = NE
j,t − δNj,t

where NE
j,t is the flow of new entrants.

Land Development. In this model, a location consists of two non-overlapping zones:
a commercial district and a residential district. Production by firms takes place in the
commercial district, and workers live in the residential district.

A building in the commercial district is required in order to operate an intermediates firm.
New buildings can be produced by a competitive construction sector by combining the fi-
nal good with commercial land, according to NE

j,t = (XE
j,t)

1−ζ̃Kζ̃ where NE
j,t is the flow

of new buildings for entrants (and hence equal to the mass of new entrants in equilib-
rium), XE

j,t is use of the final good in commercial construction, and K is a fixed amount
of commercial land, common across areas. This introduces a congestion friction into the
construction of new buildings in the commercial district; when demand for new build-
ings is high because the city is undergoing a boom, the cost of entering will be higher.
It also introduces a dynamic element to entry decisions, since the mass of firms cannot
immediately adjust to local shocks, and investment takes time to play out.

Workers rent housing in the residential district.10 Housing services are produced compet-
itively using the final good and the fixed land supply hj owned by the residential land-
lords, according to Hj,t = cvj(XH

j,t)
1−vj h

vj
j , where cvj is a combination of model constants,

and XH
j,t is use of the final good in residential services. As with commercial land, the cost

of renting land in region j will depend on how difficult it is to expand development of this
land when demand rises. This depends on the parameter vj, since residential land hj is in
fixed supply. A higher value for vj will result in a less elastic supply of housing services
in location j.

10I model residential land as a produced service so as to abstract from durability in the residential sector.
This can be accommodated at some cost in complexity.
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3.2 Equilibrium Characterization

I begin by characterizing the behavior of an intermediate-producing firm. I assume that
capitalists have perfect foresight over the paths for location fundamentals, so that the
evolution of economy wide state variables can be captured through the dependence of
the value of the firm on time and location only. The value of the firm with efficiency z, at
time t and in location j, denoted Vj,t(z), is given by the HJB

(rj,t + δ)Vj,t(z) = πj,t(z) + V̇j,t(z) + ∑
i∈{u,d}

ϕi(Vj,t(∆iz)− Vj,t(z)),(7)

where rj,t is the interest rate on the local capitalists portfolio. I provide a full treatment
of the determination of this interest rate in equilibrium in Appendix ??. The discounted
value of any firm involves three separate parts. First is the flow profits from operation
πj,t(z). Second is the appreciation in value that results from evolving state variables in
the economy, including changing wages and populations across all regions. These state
variables enter only through their impact on current local profits. Last is the appreciation
in value that arises from stochastic improvements of firm productivity.

Under the CES production structure for the final good, profits are a constant fraction of
revenues. We can exploit the fact that sales of the final good within each location have
to equal the income flowing to labor and intermediate firm profits, since the final good
sector is competitive. This allows us to write the profits of the firm with mean efficiency
Z̄j,t as

(8) πj,t(Z̄j,t) =
wj,tLj,t

(σ − 1)Nj,t
.

This is a classic result in the standard model of monopolistic competition. Independent
of demand, firms charge a constant markup over marginal cost, which itself is constant
due to the linear production function. As a result, when spending rises firms will respond
by increasing output, making a constant profit on each extra unit sold. Profits are then
increasing in total spending, and decreasing as the number of firms in a location rises due
to competition. Moreover, the profit of any firm is linear in efficiency z, and can be written
πj,t(z) = πj,t(Z̄j,t)Z̄−1

j,t z.

Now given that the probability of death is also independent of z, the value of the firm takes
a particularly tractable form. Assuming that the value of the firm is bounded (which is
proved in Appendix B.1 under simple conditions on primitives), we have the following
result:
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Lemma 1. The value of the firm is linear in z at all times, and in all locations.

This result aids substantially in characterizing the equilibrium. As we will see below, it
implies that it is unnecessary to keep track of the distribution of firm-level productivity
over time when computing equilibrium dynamics. Instead, the value at the mean entrant
efficiency in a location is a sufficient statistic to characterize the entry and investment
decisions of firms.

These decisions will depend on the profitability of the average firm in any given location.
To see how this is determined, note that from (8), profits depend on a balance between
two local scale variables. The first is the total wage bill for production, wj,tLj,t, which is
a measure of local economic activity and spending. The second is the number of firms
Nj,t in that location. Places that see growth in local spending, perhaps due to a growing
population, will incentivize the creation of new firms. These new firms can profitably use
the local labor force, due to the decreasing returns to scale each firm faces on the demand
side. Entry of these new firms will lower spending per firm, decreasing the attractiveness
of entry in the future and stabilizing the local economy.

More precisely, in equilibrium, free entry will require that the cost of creating a new firm
equals the expected value of creating a firm, or

(9) τ(NE
j,t)

ζ =
∫ ∞

0
Vj,t(z)dG(z),

where ζ ≡ ζ̃

1−ζ̃
and τ is a combination of model constants, and I have derived the cost of

creating a new firm on the LHS of equation (9) from market clearing for commercial land
in location j at time t. Thus for free entry to hold, areas with high profitability and high
firm values will induce higher rates of entry, and drive up the costs of building construc-
tion.11 an

In the simple linear setting adopted here, we can solve analytically for the entry deci-
sions of firms in every location. In combination with Lemma 1, free entry will pin down
the value of the firm at the mean entrant efficiency, such that τ(NE

j,t)
ζ = Vj,t(z̄E) and

z̄E ≡
∫ ∞

0 zdG(z) is the mean efficiency of entrants. In addition, free entry will ensure that
appreciation in this value depends only on changes in the mass of entrants through time.
Thus, while new firms have to solve a potentially complex forecasting problem involving

11Note that in this model the free entry condition is never slack, and entry is always positive. Since firms
pay no fixed operating costs, expected profits over the firm’s life must always be positive. However, as
entry goes to zero, the cost of creating firms also goes to zero, so in equilibrium there will always be some
firm creation. Net firm creation (after accounting for exit), on the other hand, may be negative.
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the entire future evolution of activity across space, in general equilibrium they know that
changes in the value of their firm will reflect only the number of entrants.

Inserting the expression for profits in (8) into the HJB gives us another expression for this
value in

(rj,t + δ)Vj,t(z̄E) =
z̄E

(σ − 1)
wj,tLj,t

Nj,tZ̄j,t
+ V̇j,t(z̄E) + ∑

i∈{u,d}
ϕi(Vj,t(∆i z̄E)− Vj,t(z̄E)),

Combining the two expressions for the mean value, along with another application of
Lemma 1, gives us

rj,t − Φ =
z̄E

(σ − 1)τ
wj,tLj,t

Nj,tZ̄j,t(NE
j,t)

ζ
+ ζ

ṄE
j,t

NE
j,t

,

where Φ = ∑i∈{u,d} ϕi(∆i − 1)− δ and gne

j,t = ṄE
j,t/NE

j,t is the growth in the flow of entrants.
Rearranging, this discussion results in the following proposition:

Proposition 1. Equilibrium entry in each location depends only on local state variables, and solves
the differential equation

(10) (NE
j,t)

ζ =
wj,tLj,t

(σ − 1)τNj,tZ̄j,t/z̄E
1

rj,t − ζṄE
j,t/NE

j,t − Φ
,

Proposition 1 is the key result that allows me to solve the model. The result says that the
equilibrium amount of entry depends positively on the local market size, captured in the
amount of available labor Lj,t, and is falling in the number of existing firms. Moreover,
population inflows will raise the entry rate, and cause the number of incumbent firms to
rise, eating away at the profitability of new incumbent firms. The second term in (10) re-
flects the appreciation in value due to rising entry costs. This appreciation itself depends
directly on the change in the amount of entry, and as such the entry rate solves a differ-
ential equation in time in every location which depends only on current state variables in
that location. This substantially simplifies equilibrium dynamics.

The second part of the theory’s feedback loop comes from the location choices of work-
ers. Since workers are freely mobile at any instant, their welfare must equalize across all
locations. Thus, given worker preferences from (3), wages and rental rates must satisfy

(11)
wj,t

p1−α
j,t

Aj =
wk,t

p1−α
k,t

Ak

for all pairs of (j, k) ∈ {1, ..., J}, where pj,t is the price of a unit of housing services in
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location j. Given that land is in fixed supply, we can use market clearing for residential
land to draw out the relationship between population and wage level. First, the price of a
unit of housing services in location j will be given by

(12) pj,t = ((1 − α)vj
wj,tLj,t

hj,t
)vj .

The presence of a fixed supply of residential land for development implies that housing
services become more costly the more people move to a location, and the more people earn
in this location. Combining (12) and (11) yields an expression that relative populations
must satisfy, given by

(13)
L

v̄j
j,t

Lv̄k
k,t

=
w

1−v̄j
j,t Aj,th̄

v̄j
j

w1−v̄k
k,t Ak,th̄

v̄k
k

,

where v̄j ≡ (1 − α)vj and h̄j ≡ hj/v̄j. As in standard models of economic geography, rel-
ative populations are increasing in relative wages, amenities and residential land supply,
recalling the static structure of Allen and Arkolakis (2014).12 Dynamically, an increase in
wages from entry of new firms will draw in new workers. The greater spending on local
firms will partially offset declining profits, allowing further entry in the future.

The final piece to characterize an equilibrium concerns movements in Z̄j,t, or average-
firm level efficiency. This efficiency evolves over time in response to firm level growth
and movements in the entry rate nE

jt ≡ NE
j,t/Nj,t, according to

(14) ˙̄Zj,t/Z̄j,t = ∑
i∈{u,d}

ϕi(∆i − 1) + nE
j,t(z̄

E/Z̄j,t − 1).

The first term in this expression reflects the growth in average firm level efficiency due
to the stochastic firm-level shocks. The second is the contribution to average productivity
due to entry. Entrants begin with an average productivity z̄E, and as such the speed at
which they enter will also influence the evolution of average productivity.

This expression highlights the importance of including a description of post-entry dynam-
ics in the model. From equation (6), wages are determined both by the number of firms
and by their average efficiency. In the data, most entrants start small, and grow over time.

12It is worth noting that the (potential) presence of heterogenous land supply elasticities in the model
have an important implication: relative rankings of places for workers are not invariant to the choice of
units for Aj,t and hj. However, given the paper is largely concerned with responses to relative changes in
fundamentals (which are unaffected by base units), this concern is immaterial for my purpose.
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If size is a proxy for productivity, then a surge of entry will actually lower the average ef-
ficiency in an area, creating a partial drag on wages that only reverses as these new firms
grow.

We now define an equilibrium under perfect foresight over location fundamentals.

Definition 1. Given paths for fundamentals {{Aj,t, hj,t, Bj,t}J
j=1, Lt}, a perfect-foresight equilib-

rium is a path for worker populations {Lj,t}J
j=1, wages {wj,t}J

j=1, interest rates {rj,t}J
j=1, the mass

of firms in each location {Nj,t}J
j=1 and average efficiency {Z̄j,t}J

t=1 such that

1. Firm values are given by (7) and capitalist investment decisions maximize their intertempo-
ral utility.

2. Worker welfare is equalized across space, such that (13) holds.

3. Wages across regions satisfy (6).

4. Free entry holds in (10).

5. Average efficiency Z̄j,t evolves according to (14).

6. The labor market clears, such that
J

∑
j=1

Lj,t = Lt.

Stationary Equilibrium. To study the equilibrium growth dynamics in this model, we be-
gin by analyzing a stationary equilibrium where location fundamentals are held constant.
The number of firms is constant in all locations, as are wages and populations. As such,
the entry rate will be everywhere constant at δ (the exogenous exit rate of firms). Using
the entry equation (10), this implies

(15)
wj,tLj,t

N1+ζ
j,t

=
wk,tLk,t

N1+ζ
k,t

.

Then long-run populations in the stationary equilibrium can be solved from (13) and the
total amount of labor in the economy. To characterize this stationary equilibrium in terms
of objects which appear in the data, suppose that realizations of location fundamentals
Aj, Bj and hj are drawn from some stochastic distribution at time 0. Then we can show the
following.

Proposition 2. There is a unique stationary equilibrium in this economy if and only if min
j
{ v̄j

1−v̄j
} >

1
(1+ζ)(σ−1)−1 . This equilibrium is locally stable. In this equilibrium:
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a) Wages increase with population according to
(16)

d
dlog(Lj)

E[log(wj)|log(Lj)] =
1

(1 + ζ)(σ − 1)− 1
+ σ̃

d
dlog(Lj)

E[log(Bj)|log(Lj)],

where σ̃ ≡ (1+ζ)(σ−1)
(1+ζ)(σ−1)−1 .

b) Average firm size changes with population according to

(17)
d

dlog(Lj)
E[log(Lj/Nj)|log(Lj)] =

1
1 + ζ

(
ζ − d

dlog(Lj)
E[log(wj)|log(Lj)]

)
.

where these conditional expectations are taken before time 0. As is standard in many spa-
tial models, existence and uniqueness of a stationary equilibrium in this model depends
on the balance of dispersion forces (represented through house price elasticities v̄j, and
entry cost elasticity ζ) and attraction forces (embedded in the increasing returns to scale
due to firm creation, embedded in σ). Local stability is demonstrated via linearizing the
dynamics of the model around this steady state, and showing convergence.

The increasing returns from variety embedded in the wage equation in (6) leads to an
equilibrium urban wage premium, with larger places paying higher wages. This can be
seen in the first term in equation (16), where the scale elasticity (σ − 1)−1 shows up. This
term is moderated by ζ, which determines the elasticity of the entry cost to the scale of
entry, since in a stationary equilibrium places with more firms will see higher entry to
replace those that exogenously die.

Without further structure on the location fundamentals, less can be said about the second
term in (16), which captures how local TFP varies with population size in the stationary
equilibrium. It will in general depend on the correlation between Bj, housing supplies hj

and local amenities Aj (and could in principle even be negative). To gain some intuition,
we can derive a closed form for this expression under a set of simple assumptions, given
in the following Lemma.

Lemma 2. Suppose that log(Aj) and log(Bj) are i.i.d across space and drawn from a joint mul-
tivariate normal N (µ, Σ) at time 0. Moreover suppose that the housing supply elasticities vj and
shifters hj are constant across space. Then

d
dlog(Lj)

E[log(Bj)|log(Lj)] =
( 1

v̄−1)ΣBA + σ̃2Σ2
B

( 1
v̄−1)

2Σ2
A + σ̃

v̄−1 ΣBA + σ̃2Σ2
B

.

From this we can see that if highly productive places are also desirable places to live
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Figure 7: Local Dynamics of Firm Creation
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Note: This figure plots representative paths for equation (18) for a low land price elasticity, a high land price
elasticity and a fixed population, beginning from the same initial number of firms in each location.

(such that ΣBA > 0), then we will tend to observe higher wages in populous areas in
the long-run. If the variance of amenities across space is large relative to local TFP (such
that Σ2

A is large relative to Σ2
B), then the relationship between wages and population will

be weaker, and determined mostly by endogenous firm creation. Though stylized, this
expression shows the difficulty in inferring the strength of endogenous productivity forces
from cross-sectional data.

Note also that in this model, average firm size will tend to be rising in population size due
to the congestion in firm creation from scarce land if this congestion is sufficiently large.
This is consistent with the facts presented in Figure 6. At birth establishments are larger
in more populous areas, but grow no faster. I use the expression in point b) of Proposition
2 directly in the estimation, exploiting the fact that average firm sizes across space give us
information about the costs involved in setting up a new firm across space.

Non-Stationary Dynamics. Even in this simple setting, much of the dynamics must be
analyzed numerically; the non-linear ODE in (10) cannot be solved in closed form. How-
ever, considering the linearized dynamics around the stationary equilibrium helps gain
intuition for the central growth channel of the model. In particular, it reveals the crucial
role of labor mobility in propagating the firm creation process through local demand. In
this process, the land price elasticity will play a key role. Places where it is easy to build
new housing will see greater amplification and propagation of changes to location funda-
mentals.

Consider the simplest case, with no post entry dynamics of firms (so Φ = −δ), and linear
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utility for the capitalists (such that γ = 0). I show in the Appendix that beginning from
all Nj,0 sufficiently close to their stationary values of N̄j, the mass of firms in each location
will satisfy

Nj,t = (Nj,0 − N̄j)exjt + N̄j,

where

(18) xj = 0.5(ρ −
√

ρ2 + 4δ
(ρ + δ)

ζ
(1 + ζ − 1

v̄j(σ − 1)
),

and it can be readily verified that xj < 0 given 1 + ζ − 1
v̄j(σ−1) > 0. To illustrate the main

mechanism of feedback from labor mobility, let us consider how the mass of firms evolves
in two identical locations j and k, save that one has a lower land price elasticity, such
that v̄k < v̄j. In such a case, it can be verified that N̄k > N̄j, so that the long run mass
of firms will be higher in the less price elastic location. Beginning from the same point
Nj,0 = Nk,0 < N̄j, their respective time derivatives satisfy

Ṅk,t

Ṅj,t
=

xk(Nj,0 − N̄k)

xj(Nj,0 − N̄j)
e(xk−xj)t,

and since xk − xj > 0, this ratio increases without bound. Moreover, if Nj,0 is sufficiently
close to N̄j, this ratio is above one at time 0. As such, while both locations will see positive
growth in the number of firms that converges to zero, the rate of increase is always faster
in the less price elastic zone. What is happening is that labor is moving into location k at
a faster rate than location j at all times, since house prices rise less for a given population
inflow. This spurs local demand more in location k than j, and leads to further growth in
both population and the mass of firms. I illustrate these dynamics in Figure 7. The limit
case of no population dynamics can be considered by taking v̄j → 1 in (18).

4. MODEL ESTIMATION

The model illustrates a mechanism whereby continued firm creation can generate persis-
tent growth in employment and wages at the local level through variety gains. I now turn
to quantifying this mechanism. The aim is simple. Returning to Figure 1, how much are
startups generating growth themselves, and how much does their presence merely reflect
other sources of local growth?

In answering these questions, I face a fundamental identification challenge. Firms are
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forward looking, and expected changes to future fundamentals will affect firm creation
today.

The strategy I employ isolates a series of demand shifters for local firm creation which are
assumed to be uncorrelated with changes in local TFP. In particular, I leverage variation
from the aggregate decline in manufacturing, which induces changes in spending at the
local level. These changes depend on the specialization of a local area in manufacturing
in 1975. I then use a baseline version of the model to generate a counterfactual equilib-
rium, where the only local changes are driven by optimal responses to an economy-wide
manufacturing decline. This idea builds on a more general model instrumental variables
approach developed in Allen et al. (2019) and Adao et al. (2019), who use the general
equilibrium structure of trade models to generate instruments for the estimation of key
parameters such as trade and labor supply elasticities.

Doing so generates spending shifters at the local level, and hence predictions for firm
entry and employment over time. I use these predictions as instruments for the changes
actually observed, recovering estimates of local scale elasticities, land supply elasticities
and substitution patterns between manufacturing and service employment.

In the following section, I describe the setting and variation used for identification. In
section 4.2 I modify the theory to accommodate multiple sectors. Section 4.3 describes the
estimation.

4.1 Structural Change and Firm Creation

In recent decades, the U.S. has experienced a significant decline in manufacturing em-
ployment. 30.3% of the U.S. workforce were employed in manufacturing in 1975. By 2015,
this number had fallen to 12%. Even during a period of significant national employment
growth, manufacturing employment in levels actually fell, from 18 million in 1975 to 12
million in 2015. Figure ?? in Appendix ?? displays these patterns.

The causes of this decline explored in the literature embody a combination of trade-based
displacement and automation. Trade explanations have emphasized heightened competi-
tion from manufacturing in the developing world since at least the 1990s, as well as a role
for offshoring by U.S. companies themselves. Several influential studies attribute large
losses in manufacturing employment to the entry of China in particular into the world
trading system (Autor et al., 2013; Pierce and Schott, 2016). The evidence for the role of au-
tomation is so far less clear, but may have been significant in substituting labor for capital
in some industries (Acemoglu and Restrepo, 2019; Hubmer, 2018). For a comprehensive
review of these issues, see Fort et al. (2018).
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Figure 8: Regional Growth and Manufacturing Specialization

(a) Employment Growth 1975-2015 (b) Manufacturing Specialization in 1975

Note: This figure compares total employment growth at the commuting zone level from 1975 to 2015 (Panel
(a)) with the fraction of employment in manufacturing within that commuting zone in 1975 (Panel (b)).
Employment growth is top-coded at 300%, and manufacturing employment shares in 1975 are top-coded
at 40%. Each polygon corresponds to a commuting zone. The source data is the public-use Quarterly
Census of Employment and Wages (QCEW) produced by the Bureau of Labor Statistics, with aggregation
of county data to the commuting zone level done by the author. Data for manufacturing specialization in
South Dakota and North Dakota uses the 1980 QCEW as a proxy for 1975 due to total censoring in the 1975
files.

The effects of this aggregate structural change had an important local dimension. In Panel
(a) of Figure 8 I plot local employment growth since 1975 across U.S. commuting zones.
The fastest growing areas during this time have been Florida, Texas and and the sparsely
populated Mountain West (light colors). The old industrial heartlands in the North-east
and Midwest have grown the slowest (dark colors). In Panel (b) I overlay each commuting
zone’s manufacturing employment share in 1975; clearly, manufacturing-heavy commut-
ing zones experienced slow growth over the past 40 years. This spatial structural change
has left significant traces on American economic geography.

The time series dimension of this pattern is shown in Figure 9. From 1990, manufacturing-
heavy areas began to diverge from the rest of the nation, with those areas doing little to
no manufacturing employment in 1975 experiencing a surge in employment growth. This
growth reflected large relative population shifts towards service-intensive areas, with little
being due to differential growth in employment-population ratios.13

Employees spend at least a portion of their income locally. As such, these changes should
imply slower growth in market size for new businesses in regions previously specialized
in manufacturing. Lower growth should then cause lower rates of business formation,
particularly in sectors that cater to local demand. Table 1 tests this prediction.

Using publicly available data from the QCEW, I regress changes in the number of estab-

13See Appendix A.9 for details.
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Figure 9: Employment Growth across Commuting Zones by Manufacturing Specialization
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Note: This figure plots the average of annual employment relative to 1975 across four groups of U.S. com-
muting zones, where commuting zones are taken from the U.S. Census groupings of counties in 2000. The
four groups are based on each commuting zones’ manufacturing employment share in 1975. They also
roughly correspond to quartiles of the manufacturing employment share distribution in 1975. Data comes
from the Quarterly Census of Employment and Wages produced by the Bureau of Labor Statistics, and
manufacturing employment uses the SIC code implementation for 1975.

Table 1: Firm Creation and Manufacturing Shares

Dependent variable: Log Change in Number of Establishments, 1990-2015

Services

All Manufacturing All High-Skill Local Ed & Med Construction Trade

Manufacturing Share −0.378∗∗∗ −0.389∗∗∗ −0.330∗∗∗ −0.175 −0.319∗∗∗ −0.718∗∗∗ −0.668∗∗∗ 0.198
of Employment, 1975 (0.084) (0.079) (0.090) (0.115) (0.084) (0.209) (0.107) (0.122)

Constant 1.359∗∗∗ 0.380 1.470∗∗∗ 1.906∗∗∗ 0.811∗∗ 0.656 0.622 1.058∗∗

(0.350) (0.334) (0.374) (0.481) (0.350) (0.817) (0.449) (0.511)

Geographic Controls Yes Yes Yes Yes Yes Yes Yes Yes
Size Controls Yes Yes Yes Yes Yes Yes Yes Yes
Demographic Controls Yes Yes Yes Yes Yes Yes Yes Yes
Observations 510 496 510 504 510 377 488 501
Adjusted R2 0.103 0.231 0.106 0.076 0.156 0.093 0.217 0.104

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: This table shows regressions of the total log change in the number of firms by industry from 1990-
2015 on the share of the local workforce employed in manufacturing in 1975. Geographic controls include
the latitude of the centroid of the commuting zone and mean January temperature. Size controls are the
commuting zone population in 1975 and the land area of the commuting zone in square kilometers. Demo-
graphic controls are the share of the population with less than a high-school degree, the average income of
the commuting zone in 1975, the fraction of the population who was black in 1975, and the average age of
the population in 1975. The changing number of observations by industry reflects censoring of the QCEW
for some regions with low population.
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lishments at the commuting zone level in the twenty-five years following 1990 on the
share of employment in manufacturing in 1975. I report the results for four major sec-
tors: Manufacturing, Services, Construction and Trade (which I classify as wholesale and
transportation establishments). A consistent pattern emerges, with manufacturing-heavy
areas seeing dampened business creation rates in subsequent decades across sectors.

I further separate Service industries into three categories: High-Skill (including finance,
technology, consulting and management), Local (restaurants, retail and non-tradable ser-
vices such as automotive repair), and Education and Medicine. The first category might
be thought of as tradable services, and be less likely to respond to local demand shortfalls
than Local Services and Education and Medicine, which is indeed what I find.

These results hold after including a rich set of controls for characteristics of each commut-
ing zone in 1975, including size, geographic, and demographic characteristics.14 As such,
they support the idea that structural change and the shift of employment out of manufac-
turing had a direct effect on startup rates, depressing them in areas which were hit hardest
by manufacturing’s decline.

It is also interesting to note that while the number of manufacturing establishments con-
tracted in most commuting zones during this period, they actually rose on average in
commuting zones with less than 20% manufacturing employment in 1975. One inter-
pretation is that the even in a period of national contraction, the large population and
employment shifts presented in Figures 8 and 9 generated sufficiently increased demand
for manufacturing products in these areas that they incentivized the creation of new firms
to meet this demand.

4.2 Taking the Model to the Data

To take the model to the data, I now introduce two sectors: Manufacturing and Services. I
suppose that final output in each location is composed of two final sectoral goods, given
by a CES aggregator

(19) Yj,t =
[
(YM

j,t )
ϵ−1

ϵ + (YS
j,t)

ϵ−1
ϵ

] ϵ
ϵ−1

where YM
j,t and YS

j,t are the final output of the manufacturing good and the service good.
Both these final outputs are produced competitively by aggregating intermediate inputs
within a location according to (5), but with sectoral specific elasticities σM and σS. I modify

14See the note in Table 1 for details.
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the production function to accommodate sectoral differences, and assume that production
of each intermediate variety is done according to

qM
j,t(i) = Bj,tMj,tz̃t(i)l(i) qS

j,t(k) = Bj,tz̃t(k)l(k)

for firms in the service and manufacturing sectors respectively. Bj,t continues to define
a sector-neutral location-specific TFP, while Mj,t is a manufacturing-specific productivity
shifter. This manufacturing shifter is the key cause of structural change in the two-sector
model. It consists of two components: a location specific mj,t, and an aggregate Πt com-
mon to all locations, such that

Mj,t = mj,tΠt.

The comparative advantage of a location in manufacturing is captured by mj,t, and could
reflect a number of features that make manufacturing firms particularly productive in a
location, including favorable transportation infrastructure, cheap power supply and his-
torical local knowledge stocks. Without loss, I take these to be mean zero in logs across
locations.

Πt is an aggregate shifter which affects the output of all manufacturing firms within the
economy. The effect it has on a particular location depends on local specialization in man-
ufacturing. Such specialization can come from two sources; comparative advantage in
productivity through mj,t, and the number of firms NM

j,t producing manufacturing goods.
To see this, note that at any time the share of the local labor force in services will be deter-
mined by

LS
j,t

Lj,t
=

(
Z̄S

j,t(NS
j,t)

1
σS−1

)ϵ−1

(
Z̄S

j,t(NS
j,t)

1
σS−1

)ϵ−1

+

(
mj,tΠtZ̄M

j,t (NM
j,t )

1
σM−1

)ϵ−1 .

It is apparent that all else equal, falls in Πt will raise service employment locally, as work-
ers reallocate away from manufacturing locally. For a given change in Πt, this effect will be
more pronounced the higher manufacturing comparative advantage mj,t, and the greater
the number of manufacturing firms relative to service firms currently operating.

However, two other forces come in to play when aggregate manufacturing activity suffers.
First, wages fall immediately, and fall more in places specialized in manufacturing. This
causes some workers to leave the area until spatial equilibrium is restored. Second, as
workers leave, investment in manufacturing-heavy areas becomes less attractive due to a
lower overall level of spending in this area. This reduces the number of firms over time,
and due to the economies of scale embedded in the production function in (19), wages
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full even further, causing more workers to leave. All together, this can serve to lower total
service employment in the long run.

4.3 Estimation Implementation

Estimation of the two sector model proceeds in two stages. First, I recover key firm-
level parameters from direct estimation of the firm growth process on the LBD. Second,
I use the structure of the model to generate moment conditions, based on counterfactual
equilibrium changes in employment and firm creation, to estimate the fundamental local
production parameters.

Firm-level Parameters. I first estimate the parameters describing the firm life cycle di-
rectly from the LBD. In a stationary equilibrium, growth in firm-level productivity can
be directly inferred from growth in employment, conditional on survival. I estimate the
firm level growth parameters ϕi and ∆i for i ∈ {u, d} using the first four moments of the
employment growth distribution in the entire LBD. The notion of a firm in the model cor-
responds most closely to an establishment with a fixed address in the data, and as such
I use the LBD to construct the distribution of establishment growth rates from 1980-2015,
aggregating across all industries.

To estimate the parameters of the model, I simulate a panel of firms, and sample the data
at a yearly time frequency to calculate the distribution of annual firm growth rates condi-
tional on survival. The four growth parameters are chosen to match the first four moments
of the empirical distribution of firm growth rates, and are reported in Table 6 in Appendix
A.11. I estimate the death rate of establishments δ from the average annual exit rate from
1980 to 2015.

Structural Production Parameters. Next I estimate the local scale elasticities in the num-
ber of firms, σM and σS, and the elasticity of substitution between manufacturing and
service production at the local level, ϵ. Market clearing will imply relative sectoral em-
ployments given by

(20)
LS

j,t

LM
j,t

=

 (NS
j,t)

1
σS−1 Z̄S

j,t

mj,tΠt(NM
j,t )

1
σM−1 Z̄M

j,t

ϵ−1

Local specialization depends on an external comparative advantage (captured through
mj,t), and the relative numbers of firms in both locations, which are equilibrium outcomes.
We can use this ratio to derive an expression that the real wage must satisfy in a location,
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given by

(21) wj,t = (NS
j,t)

1
σS−1

(
1 +

LM
j,t

LS
j,t

) 1
ϵ−1

Z̄S
j,tBj,t

An analogous equation holds for the local wage in terms of the number of manufacturing
firms and local manufacturing comparative advantage (recall that services productivity is
normalized to 1 in every location).

The fundamental estimation problem is immediately clear from this equation. Wages will
tend to be high where local TFP Bj,t is high, and if there are scale economies, where the
number of local firms Nj,t is high. However, local TFP is unobserved, and the number
of firms in a location will respond to TFP. Examining (21), higher productivity will draw
more workers to an area, raising local profits and incentivizing entry. This is a problem
that is not specific to this paper, and arises in a wide variety of contexts that attempt to
estimate notions of agglomeration (see Ahlfeldt and Pietrostefani (2019) for a review).

Note also that estimating equation (21) in changes is not sufficient to address this issue.
Write the estimating equation in log differences as

(22) ŵj,t =
1

σS − 1
N̂S

j,t +
1

ϵ − 1
( ̂1 + LM

j,t /LS
j,t) +

ˆ̄ZS
j,t + B̂j,t

where x̂j,t ≡ log(
xj,t

xj,t−1
) for any variable x and two points in time.15 Changes in local

TFP Bj,t will also be correlated with changes in the local numbers of firms in both sectors,
NS

j,t and NM
j,t . Estimating this equation by OLS will give us inconsistent estimates. What is

needed are instruments for the local number of firms in each sector and changes in sectoral
employment which are themselves uncorrelated with disturbances to local productivity.

The structure of the model suggests a natural way to do this. 16 A decline in aggregate
manufacturing productivity Πt will imply different investments in the local number of
firms, depending on initial manufacturing specialization. Using a guess for the funda-
mental parameters of the model, I calibrate the model to a steady state in 1975. In doing
so I back out fundamental comparative advantages mj,t to exactly match each commut-
ing zone’s share of employment in manufacturing in 1975, given observed numbers of
firms in each sector. I then solve for a perfect-foresight path of Πt which exactly matches

15For the estimation I take these to be five-year changes in order to minimize the contributions of mea-
surement error and Census sampling frame adjustments among small commuting zones.

16I defer to the appendix discussion of changes in local firm efficiency, ẐS
j,t, which can be handled via a

separate procedure.
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the series for total U.S. manufacturing employment in the data. The model generates a
time-series for (ÑS

j,t, ÑM
j,t ) as well as labor allocations (L̃S

j,t, L̃M
j,t ) in the absence of changes

to manufacturing comparative advantage mj,t and local TFP Bj,t.

I use these counterfactual investment and employment patterns as instruments for the
true changes, leaving us with the moment conditions

E[B̂j,tQ̂j,t] = 0,

Instruments : Qj,t =

[
ÑS

j,t

ÑM
j,t

]
.

Since the instruments are model-generated, with no additional local data past 1975, they
are in one sense simply time-varying functions of the manufacturing shares of each com-
muting zone in 1975. Thus these moment conditions boil down to specifying that local
changes in sector-neutral TFP (i.e. changes not involving structural change in manufac-
turing) are uncorrelated with initial manufacturing shares.

Before proceeding further, it is worth asking how well these instruments predict the actual
observed changes in economic activity. The results from the first-stage, given in Appendix
A.10, are quite strong, and in addition, the instruments do not systematically over- or
under-predict their data counterparts. This might be taken as a partial validation of the
model, as no information on entry patterns or firm investment is used to generate the
counterfactual series for employment and establishment changes.

A second set of moment conditions pins down the scale parameters for manufacturing
σM. This comes from the analog of (22) with manufacturing firms on the RHS, leaving us
with the moment condition

E[m̂j,tQ̂j,t] = 0

This condition also has a simple interpretation. It assumes that changes in relative compar-
ative advantage in manufacturing are uncorrelated with manufacturing shares in 1975. It
is worth specifying what this means; it does not say that manufacturing-heavy areas ex-
perienced no greater shifts in relative employment to services. Rather, it says that all of
this effect is mediated through initial exposure to the investment decisions of firms. Places
that were better at manufacturing in 1975 did not become systemically better or worse in
the sector in later years.

Third is the strategy for ϵ, the local elasticity of substitution between manufacturing and
services. Recall that for a given ϵ, to generate the instruments (ÑS

j,t, ÑM
j,t ) I solve for the
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path for aggregate manufacturing productivity Πt that exactly matches the U.S. manufac-
turing employment share. Changing ϵ influences the regional consequences of structural
change. In particular, a high value of ϵ makes it easier for employment to move from man-
ufacturing into services locally, without large effects on the local wage. In contrast, when ϵ

is low, a fall in Πt will depress wages in areas that are more specialized in manufacturing,
and cause more workers to leave the area and move to service-intensive locations.

I thus choose ϵ to match the model-implied effects of structural change with what is ob-
served in the data. In particular, I choose ϵ such that, given all other estimated parameters
and a path for Πt that matches the aggregate manufacturing employment share, the av-
erage difference in relative employment growth between manufacturing-intensives areas
in 1975 (red commuting zones in Figure 9) and service-intensive areas (the blue commut-
ing zones) by 2015 is exactly 36% (corresponding to the gap between the endpoints of the
lines).

Lastly, we need to estimate a value for ζ, the parameter which determines how costly
it is for the mass of entrants to adjust when local fundamentals change. Proposition 2
highlights that in the stationary equilibrium, this parameter also directly governs how
average firm size increases with population size. As such, I use equation (17) directly,
computing the average firm size elasticity and average wage elasticity with respect to
population for the years 1980-2010 in the Quarterly Census of Employment and Wages,
and use these to estimate ζ.

The estimated parameters appear in Table 7 in Appendix A.11. The estimated scale elastic-
ity for wages in the local number of manufacturing firms is significantly higher than that
for services (captured in the relative differences between σM vs σs). This perhaps accords
with intuition: it is commonly assumed by policymakers that new manufacturing activity
generates greater local multipliers than the equivalent investment in service firms.

Housing and Labor Supply Elasticities. The discussion in Section 3 highlights the key
role that land supply plays in propagating the feedback from firm creation and labor sup-
ply. Places with more restrictive physical or regulatory constraints will receive smaller
population inflows, and reduced growth in wages as a result. To complete the estima-
tion and obtain measures of these elasticities at the local level, I follow a similar model-
instrumentation strategy to above. From equation (12), the rental rate of housing satisfies
(in log changes)

(23) p̂j,t = vj(ŵj,tLj,t − ĥj)

such that log rental changes are linear in log changes in the total wage bill in the area.
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I lack detailed data on rental rates at the commuting zone level. Instead, I impute them by
assuming that rental rates are proportional to house prices. I use house price indexes from
the Federal Housing Finance Agency at the county level, from 1980 to 2017, and deflate
these by the CPI in each year. I then construct measures of long percentage changes in
house prices (over the 5 year horizon) to abstract from short-term volatility in these series.
I aggregate these changes to the commuting zone level by taking population-weighted
averages of these changes over each county within a given commuting zone.

The omitted variable problem in estimating (23) is clear. Unobserved changes in shifters
of the housing supply function ĥj (such as changes to local zoning laws ) will tend to
induce movements in Lj,t. Moreover, endogenous changes in zoning (which would be
captured in ĥj) in response to increases in local income are well-documented (Saiz, 2010).
This would suggest that OLS estimates of vj in equation (23) will be biased, though the
direction is unclear. To obtain consistent estimates, I again use the model to generate
instruments for total payroll, denoted w̃j,tLj,t. Identification requires now that changes in
local housing supply shifters in any period are uncorrelated with manufacturing shares
of employment in 1975, which again is the only local data used as inputs to solve the
counterfactual model.

Due to the limited length of data for an individual commuting zone, I pool commuting
zones and estimate a single elasticity. The results are presented in Table 7. The IV estimate
is substantially higher than the OLS estimate.

5. STARTUPS AND LOCAL GROWTH

I now use the estimated model to perform four exercises, which together quantify the
contribution of firm creation to growth. First, I show the impulse responses of changes
in local employment and wages to reductions in the cost of entry, incorporating the en-
dogenous responses of employment and population movements. I decompose the total
changes into a component due to the initial shock and a dynamic component that reflects
feedback from labor mobility.

Second, I decompose changes in wages at both the local and aggregate level into contri-
butions from firm creation and from incumbent efficiency improvements. Third, I study
the outcomes of the model under persistent, anticipated changes to local fundamentals,
and quantify the role of firm creation in amplifying local shocks.

Finally, I use the model to consider how local investment decisions amplified aggregate
structural change in recent decades, and in particular the decline of the US Rustbelt. In
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Figure 10: Impulse Responses of Employment and Wages to a Fall in Entry Costs τ
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Note: This figure plots impulse response for employment, wages and the number of firms to a one-time,
permanent shock to entry costs τin that location, holding all other regions the same. The shock is calibrated
to deliver a 1% increase in the long run number of firms. Dotted lines represent the counterfactual outcome
when labor is not allowed to move.

particular, I study the contribution of firm creation dynamics to amplifying the differ-
ences in employment and wage growth between areas specialized in manufacturing ver-
sus those specialized in services in 1975, incorporating full general equilibrium dynamics.

5.1 Dynamic Contributions to Employment and Wage Growth

I first consider the dynamic response of local economic activity to a subsidy that lowers
the cost of entry τ. Beginning from a stationary equilibrium, an unanticipated subsidy to
the entry cost occurs in a single location, the size of which is chosen to increase the long-
run number of firms by 1%. In Figure 10 I plot the dynamic response of local economic
activity.

In the long-run, wages increase by 0.3% due to the estimated returns to scale in the pro-
duction structure. Employment increases by 0.4% as workers move to the area to take
advantage of the higher wages. Two central messages emerge from this exercise. First, the
dynamics are slow; after 5 years, the baseline effects of the shocks are still barely halfway
to their long run values. This reflects the difficulty of adjusting the mass of firms quickly
in response to local shocks.

Second, there is substantial endogenous feedback. The dotted lines show the response
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Figure 11: Impulse Responses of a Shock to Local Productivity
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Note: This figure plots impulse responses to a permanent (Panel (a)) and temporary (Panel(b)) shock to local
productivity in the full estimated model.

of the mass of firms and wages if no labor is allowed to relocate to the affected location.
The response here is 60% smaller, suggesting that new workers brought in by the initially
higher wages themselves provide an important impetus to local demand.

To see this another way, in Figure 11 I show the dynamics out of steady state after an
impulse to local TFP. Panel (a) considers a one time, unforeseen permanent increase in
Bj,t of 1% in one location only, which then persists for all time. The shock immediately
causes the local wage to rise 1%, and since labor is free to move at all times, an immediate
rise in employment. The dynamics of firm creation then respond to this increase in local
demand by slowly rising to an almost 3% increase in the baseline level. The long run
increase in wages is almost double the initial impulse. Panel (b) shows the propagation
of a temporary shock, and reveals that the firm creation dynamics act to prolong and
propagate the effects of the initial impulse over time.

I now turn to the role of firm creation in driving aggregate wage growth. The estimated
model allows us to perform a simple decomposition of per-capita wage growth into a
contribution for Nj,t, and a joint contribution of TFP Bj,t and incumbent efficiency Zj,t.
For ease of interpretation, I abstract from sectoral differences for this exercise, and use
equation (6) and the implied joint σ from the impulse response in 10 (which gives σ = 3.9)
.

I apply this equation to data on changes in local wages at the commuting zone level. On
the right hand side of the equation, I use rolling five-year windows of the changes in
the number of local establishments. Two results are of interest, presented in Figure 12.
First, in most years, a substantial fraction of wage growth at the commuting zone level is
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attributable to firm creation. Panel (a) shows the inter-quartile range of this fraction for
the past 25-years, as well as the median, which averages 26% during this period.

In Panel (b), I compute employment-weighted changes in real wages for each 5-year win-
dow at the commuting zone level. Summing these across all commuting zones yields a
figure for average real wage growth for the entire United States. I do the same aggregation
for changes in the numbers of establishments. We can see that U.S. real wage growth also
has a substantial component due to firm creation. This contribution declined substantially
in the Great Recession, along with real wage growth, reflecting a significant shortfall in
the number of new firms. It has recovered somewhat in the years since. However, the
recovery in firm creation is driven by a few large metropolitan areas, which have seen re-
newed business dynamism since 2008. It is not apparent in the median commuting zone,
which, as Panel (a) in Figure 12 shows, has continued to see persistently low entry rates.
This graph also shows that the surge in real wage growth in the 1990s was not due to
a surge in business creation. Other work (e.g. Fernald (2015)) has documented that this
surge likely reflected one-time TFP improvements from the ICT revolution, which have
not been repeated since.

These figures for wage growth are substantially higher than the fraction of productivity
growth due to entrants calculated in Garcia-Macia et al. (2019), despite the fact that the
calibrated σ in that paper is 4, virtually identical to the 3.9 here. There are two reasons for
this. First, by looking at 5-year horizons, the drag that the small size of entrants at entry
reverses quickly, due to their fast initial growth. As such, at a longer time horizon the con-
tribution from variety gains is much more apparent. Second, there is no role for creative
destruction at entry in this model, whereas in Garcia-Macia et al. (2019) new entrants may
steal existing products.

5.2 Persistent, Anticipated Shocks and Propagation

I now consider the role of firm creation in propagating and amplifying fundamental lo-
cation shocks. To do so, I go beyond data description to postulate a simple process for
location productivity Bj,t, and study how the model behaves under this process.

In particular, I suppose that the the growth rate of Bj,t, denoted gB
j,t, follows an Ornstein-

Uhlenbeck process, such that

dgB
j,t = −θgB

j,tdt + ςdWj,t

where Wj,t is a standard Weiner process. This process is particularly convenient for cap-
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Figure 12: Firm Creation and Real Wage Growth
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Note: Panel (a) plots the median fraction of commuting zone wage growth due to changes in the number
of establishments in the estimated model, as well as the interquartile range. Wage growth is computed as
the log change in the average real wage from year t to year t + 5. Real wages at the commuting zone level
are computed by deflating nominal wages by the U.S. CPI. Panel (b) aggregates these changes for the whole
U.S., weighting the observations for each commuting zone by employment in each year. Data is from the
Quarterly Census of Employment and Wages.
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Figure 13: Simulated Local Growth Rates for Full Model and Underlying Shocks

Note: This figure shows the distribution of simulated 10-year growth rates in employment under perfect
foresight, and where the process for local productivity follows the process outlined in Section 5.2. 10-year
employment changes are defined as the log change change in total employment at the commuting zone
level between year t and year t + 10.

turing persistent differences in the growth of areas that is not driven by the model mech-
anism of the paper. In this formulation, θ indexes how quickly the growth rate of local
productivity returns to its long-run (zero) mean, and controls the persistence of growth
in location fundamentals. ς controls the volatility of the growth rate process. I assume
that the realizations of these paths are drawn at time 0, and that firms continue to fully
anticipate the paths for productivity and population in their location, making their entry
decisions accordingly

I choose these parameters to exactly match two central moments from the data. Keeping
all other model parameters as estimated in Section 4, I first target the variance in 10-year
growth rates in employment at the commuting zone level, where I calculate this from the
QCEW. Second, I target the autocorrelation of the growth rate in employment at a 10-year
horizon. With calibrated values for θ and ς in hand, I then repeatedly simulate the model
under this process for 100 year time horizons.

In Figure 13 I show the simulated distribution of 10-year employment growth rates.17 I
then assess the role of the fundamental shocks to local productivity in driving this disper-
sion by shutting off firm creation entirely, keeping the number of firms in each location
fixed at their initial values. The distribution of growth rates just driven by local produc-

17I begin the simulation from a steady state calibrated to data in 1975, though the results are robust to
this choice.
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tivity is show in blue, and the distribution in the full model is shown in green.

The standard deviation in 10-year employment growth rates is almost three times as high
in the full model as in the model that only experiences local productivity shocks and
no firm dynamics. Places that see local employment booms find these booms amplified
significantly by the process of firm creation, which adds to the demand for new workers
and significantly propagates surges in employment.

5.3 The Startup Multiplier and the Decline of the US Rustbelt

I lastly consider the role that firm creation has played in facilitating the changing patterns
of employment growth documented in Section 4. To do so, I take structural change in
the model to be driven by a fall in aggregate manufacturing output Πt which affects all
manufacturing firms in the economy, in the same way as I did when generating the in-
struments for estimation. The most straightforward interpretation of this shock is a trade
shock driven by developing country competition. Ordinarily, we might think of this as af-
fecting the equilibrium relative prices of manufacturing goods. Without an explicit model
of trade, such a notion can be mapped onto movements in Πt, which directly affects the
relative prices of goods and services within a location.

I again solve the full model for the path for Πt which exactly matches the series for the
aggregate share of U.S. employment in manufacturing, and recover implied commuting-
zone level growth paths. I retain the assumption of perfect foresight on the part of indi-
vidual firms, such that they anticipate the fall in manufacturing productivity through Πt

from 1975 onwards.18 I also take the path for aggregate employment Lt as exogenous and
fully anticipated on the part of the firms. Lastly, I assume no changes to location funda-
mentals (Bj,t , Aj,t and mjt) from their values in 1975, which are calibrated to rationalize
observed data on wages, employment by sector and number of firms by sector within
each commuting zone for that year.

Panel (a) in Figure 14 plots the implied paths for employment relative to 1975 in every
commuting zone in the full estimated model. The colors correspond to the same group-
ings of commuting zones used in Figure. In Figure 31 in Appendix A.12 I show average
employment growth within each of the four groupings. Recall that ϵ was estimated such
that the gap between the least and most manufacturing-intensive group (blue and red) in
2015 matches the data.

In Panel (b) I plot the outcomes of the model when shutting down endogenous invest-
ment dynamics. I equalize the firm entry rates in every region to be the exogenous exit

18Firms still face idiosyncratic uncertainty with respect to their efficiency before before and after entry.
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Figure 14: Contribution of Startup Deficit to Spatial Structural Change

(a) Baseline Estimated Model (b) Model Equalizing Startup Rates

Note: This figure plots the evolution of employment across commuting zones using the baseline estimated
model under two scenarios. Panel (a) shows the model-implied growth in employment under the path for
manufacturing productivity which matches the estimated decline in manufacturing employment. Panel (b)
shows growth when fixing the number of firms in both manufacturing and services to their baseline values
in 1975. The four color groups correspond to the four groups of 1975 manufacturing shares employed in
Figure 9: blue (less than 20%), dark grey (20-30%), light grey (30-40%) and red (over 40%).

Figure 15: Model-Implied Startup Deficits Due to Structural Change

Note: This figure shows the model-implied startup deficit in each U.S. commuting zone when the pro-
ductivity process for aggregate manufacturing productivity Πj,t is chosen to exactly match aggregate U.S.
manufacturing employment. The deficit is calculated as the ratio of the model-implied mass of firms at the
local level in 2015 against the counterfactual outcome in the same year where Πj,t is held constant from
1975-2015. Cells are missing where manufacturing employment in the 1975 QCEW is suppressed.
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rate δ for the entire period of 1975-2017. As such, the entire effect of structural change
is captured by the movement of workers across firms. Under this scenario, dispersion
is greatly reduced; the difference in employment growth between the service heavy and
manufacturing heavy commuting zones is on average only 37%. Put another way, had
entry rates been equalized across regions during this period, the manufacturing-heavy
commuting zones in the U.S. Northeast and Midwest would have almost 10% more em-
ployment relative to what we see today. While the decline of manufacturing would have
still driven marked regional divergence, this divergence was amplified and propagated
by endogenous firm creation decisions.

To see the regional implications directly, in Figure 15 I map estimates of the “startup
deficit” implied by the model in each commuting zone. I define this deficit as the total
number of local firms in the full model in 2015 relative to that in the scenario where en-
try rates are equalized across space between 1975 and 2015. Commuting zones in red are
those for which the deficit is positive, reflecting an initial specialization in manufacturing,
and consequently slower firm creation dynamics over the last forty years. Two regions
stand out as “missing” a significant number of firms. The first are the classic US Rust-
belt states, stretching from New York to Wisconsin along the shores of the Great Lakes.
A second zone is apparent moving through Tennessee, Kentucky and parts of Virginia
and North Carolina. While these regions have also experienced a range of other changes
that are not captured in the model, this analysis suggests that to understand their recent
growth experiences, a deficit of new firms driven by the flight of manufacturing and local
workers is an essential part of their story.

6. CONCLUSION

New firm creation is central to economic growth. This paper has studied how firm cre-
ation affects employment and wage growth at the local level, and thereby shapes the for-
tunes of cities and local economic areas. There are three key takeaways.

First, the local startup rate is essential to understanding the dynamics of local growth. Its
persistent contribution to new jobs, combined with the uniform contraction of incumbents
across space, places startups as the dominant driver of local growth experiences in a sta-
tistical sense. The absence of differential firm lifecycles across space only further serves
to highlight the role of firm creation. At the same time, this absence provides a caution-
ary bound on the importance of density-based externalities and models of selection to
explaining differences in firm output across space.
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Second, one way to understand the persistence of the startup rate and its contribution to
growth is through the interaction of increasing returns and labor mobility. At the local
level, startups drive significant wage and employment growth, attracting new workers,
whose demand then spurs further firm creation. Though this is an old idea in economic
geography, estimation on new data here suggests that the quantitative feedback is strong.

Third, considering firm creation dynamics sheds new light on fundamental questions fac-
ing the U.S. economy. The decline of manufacturing has devastated the fortunes of many
cities and towns throughout the U.S. This paper has emphasized that it is not only the
direct effects of structural change which matter. Manufacturing’s flight has spilled over
onto firm creation decisions in other local sectors, compounding the pain significantly
and trapping areas in a spiral of decline. Understanding these dynamics is the first step
towards developing solutions.
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A. EMPIRICAL APPENDIX

A.1 Employment and Wage Growth at the Local Level

Figure 16: Distribution of Commuting Zone Level Employment and Payroll Growth
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(b) Real Payroll Growth
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Note: This figure shows an estimate of the distribution of cumulative growth in employment (Panel (a)) and
payroll (Panel (b)) at the commuting zone level. The source data is the public-use County Business Patterns.
Commuting zones are defined using the boundaries from the U.S. Census for the year 2000. Aggregation
from county files to commuting zone level is done by the author. Percentiles of cumulative growth are
calculated for each year, and averages are taken within percentiles. Real payroll for each commuting zone
is calculated via deflating nominal payroll by the CPI in each year.
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In this section of the Appendix I document the variability of growth at the local level in the U.S.

over the last 40 years. I use the public-use County Business Patterns to construct a panel of 703

commuting zones which together form a complete partition of the U.S. I then examine how total

employment and total payroll have evolved within each of these commuting zones over the past

40 years. Figure 16 shows how variable growth at the local level has been by representing the

distribution of cumulative growth at the local level during this period. For employment, mean

cumulative growth between 1975 and 2016 was 105%, with a standard deviation of 108%. The 90-

10 ratio is substantial: at the 90th percentile, cumulative growth in employment was 231%, while

at the 10th percentile it was 15%. Total real payroll growth shows even more dispersion across

commuting zones. In Figure 17 I plot illustrative sample paths for some well-known areas.

Figure 17: Sample Commuting Zone Employment Growth Paths
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Note: This figure overlays sample employment growth paths for five commuting zones onto Panel (a) of
Figure 16.

A.2 Employment Growth and The Startup Rate

This section of the Appendix explores in more detail the relationship between employment growth

and the startup share presented in Figure 1.

In Figure 18 I show an estimate of the conditional distribution of 10-year employment growth at

the local level against the startup share in that commuting zone. Census disclosure rules prevent

the release of scatter plots, but much of the same information can be obtained from examining a

representation of the conditional distribution. I summarize this by four quantile regressions (at the

the 90%, 75%, 25% and 10% level) of 10-year forward employment growth on 20 quantiles of the
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startup share, as well as reproducing the conditional mean function from Figure 1. While there is

variation around the mean, the current start-up share robustly predicts growth in employment.

Figure 18: The Conditional Distribution of 10-Year Employment Growth at the CZ Level
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Note: This figure shows an estimate of the conditional distribution of 10-year forward employment growth
against the start-up percentage in a given year at the commuting zone. Conditional quantiles are computed
by conducting quantile regressions of 10-year employment growth on 20 dummy variables for the startup
percentage during. Employment growth is defined as the log change in total employment at the commuting
zone level between year t and t + 10, and the startup percentage is the fraction of establishments who are
either aged 0 or 1 year in year year t.

In Table 2, I estimate the relationship between local employment growth and the start-up percent-

age with controls. Panel A regresses employment growth in log changes at the local level from

year t to year t + 10 on the fraction of establishments that are startups (establishments of age 0 or

1) in year t, and using the years 1980, 1990 and 2000. Panel B conducts the same analysis using

employment growth from year t to year t + 1. The local unit of analysis is either commuting zone

or county.

Columns I.A and II.A. regresses the log employment change on the startup fraction with no con-

trols. I.B and II.B controls for industry employment shares in the location in year t, where these

industries are defined as employment at the 1-digit NAICS level. NAICS codes are mapped to all

establishments using the work of Fort and Klimek (2018). Columns I.C and II.C controls for the

log of employment, and I.D and II.D includes local area fixed effects. In all cases, these start-up

fraction is strongly associated with growth in both the next year, and the subsequent 10 years.

I now consider more detail in the conclusion of Fact 2. While Figure 2 decomposes growth across

areas ranked by their initial startup percentage, it is instructive to ask how this picture changes

when we look at areas ranked by their growth performance. In Figure 19 I repeat the estimation
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Table 2: Estimates for Local Employment Growth By Start-Up Percentage

Dependent Variable: Log Employment Change × 100

Commuting Zone Level County Level

Panel A: 10-Year Growth I.A I.B I.C I.D II.A II.B II.C II.D

Startup Fraction 156.2∗∗∗ 196.7∗∗∗ 195.0∗∗∗ 99.51∗∗∗ 180.6∗∗∗ 188.2∗∗∗ 189.8∗∗∗ 126.2∗∗∗

(14.12) (15.44) (15.74) (10.38) (12.98) (14.94) (15.19) (10.38)

Log Employment 0.798∗ -1.458∗∗∗ -0.581 -2.412∗∗∗

(0.436) (0.333) (0.514) (0.209)

1-digit Industry Emp. Shares No Yes Yes Yes No Yes Yes Yes
Local FE (CZ or County) No No No Yes No No No Yes
R-squared 0.107 0.107 0.169 0.354 0.097 0.111 0.112 0.246
Observations 2,100 2,100 2,100 2,100 9,200 9,200 9,200 9,200

Panel B: 1-Year Growth

Startup Fraction 27.53∗∗∗ 35.07∗∗∗ 35.45∗∗∗ 28.02∗∗∗ 25.72∗∗∗ 28.02∗∗∗ 28.23∗∗∗ 19.70∗∗∗

(0.9789) (1.202) (1.250) (1.627) (0.529) (0.609) (0.622) (0.705)

Log Employment -0.079∗∗ -9.904∗∗∗ -0.065∗∗∗ -7.211∗∗∗

(0.040) (0.271) (0.026) (0.114)

1-digit Industry Emp. Shares No Yes Yes Yes No Yes Yes Yes
Local FE (CZ or County) No No No Yes No No No Yes
R-squared 0.045 0.055 0.055 0.233 0.031 0.034 0.034 0.170
Observations 24,000 24,000 24,000 24,000 104,000 104,000 104,000 104,000

Note: This table reports the estimated coefficients from regressing employment growth at the local level on
the start-up percentage of the location, defined as the fraction of establishments of age 0 and 1. The sample
period is from 1980-2005 for 10-year growth (for example, the observation for 2005 includes 10-year growth
from 2005 to 2015). Observation counts have been rounded to accord with U.S. Census Disclosure rules.
*** denotes significant at the 1% level, * denotes significant at the 5% level, * denotes significant at the 10%
level.
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of equation (1), with one key difference. In each year, I assign each commuting zone to one of 10

deciles according to their (forward) 10 year employment growth from that year. I then take the

means of each term in equation (1) across each one of the ten deciles.

Figure 19: Entrant Contributions to 10-Year Employment Growth
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Note: This figure plots the contributions to future 10-year employment growth at the commuting zone level
by successive cohorts of entrants, as well as current incumbents. Areas are assigned in each year to 10
deciles of 10-year employment growth. Decomposition is as in equation (1). Years are from 1990-2015 (for
example, 10-year growth for 1990 is taken for the period 1980-1990). N = {24, 000}, where this count has
been rounded to accord with U.S. Census disclosure rules.

There is of course a larger degree of variation in total 10 year employment growth across these

deciles than is apparent when splitting commuting zones by their startup percentage. However,

the two conclusions I drew in Section 2 are sustained in this analysis. First, there is a strong con-

tribution to total employment growth from each cohort of entrants that starts up during the 10

year period, with this contribution much greater in areas with high rates of employment growth.

The persistence of the startup contribution is very salient; the higher deciles have high entrant

contributions across all cohorts.

Second, it remains the case that incumbent establishments subtract from employment growth over

the 10-year time horizon. However, split by growth deciles, there is more variation in the contri-

bution of incumbents than when looking by the startup percentage in Figure 2.

To help understand why, I conduct a related exercise, and decompose total growth in the number of
establishments at the commuting zone level over 10 year horizons. From this we can see what role

differential exit of establishments is playing in Figures 19 and 2. In particular, for each commuting

zone I write the total growth in the number of establishments as
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(24)
Nestabsi,t − Nestabsi,t−10

Nestabsi,t−10
= ∑

a∈{0,1,..,10}

Nentrantsa
i,t

Nestabsi,t−10
+ (

Nincumbi,t

Nestabsi,t−10
− 1)

where Nestabsi,t is the number of establishments in commuting zone i in year t, Nentrantsa
i,t is the

number of surviving entrants of age a who entered during the 10 year period, and Nincumbi,t is

the number of incumbents who existed 10 years prior and are still surviving by period t.
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Figure 20: Decomposition of Growth in the Number of Establishments Across Cohorts

(a) Across Areas Ranked by Startup Percentage 10 Years Prior
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(b) Across Areas Ranked by 10 Year Growth in Employment
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Note: This figure shows a decomposition of 10-year growth in the number of establishments at the com-
muting zone level into contributions from incumbents and successive cohorts of entrants. Panel (a) splits
the decomposition by the deciles of the startup percentage 10 years prior, while Panel(b) splits by deciles
of 10-year employment growth. Decomposition is as in equation (1). Years are from 1990-2015 (for exam-
ple, 10-year growth for 1990 is taken for the period 1980-1990). N = {24, 000}, where this count has been
rounded to accord with U.S. Census disclosure rules.
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I then assign each commuting zone to the same two groupings as above: 10 deciles of the startup

percentage 10 years prior at the commuting zone level, and 10 deciles of 10-year employment

growth at the commuting zone level, for the period 1990-2015. I average each of the terms of the

right hand side of equation 19 within these deciles. The results are plotted in Figure 20.

The black bars are effectively the 10-year exit rate of incumbent establishments. This is strikingly

uniform across areas in both decompositions. Effectively, incumbent establishments exit at the

same rate over a 10-year horizon regardless of the employment or entry dynamics.

A.3 Wage Growth and The Startup Rate

In Table 3 I repeat the regressions in Table 2, but now with 10-year growth in average wages at

the local level as the dependent variable. The central right hand side variable continues to be the

startup percentage in year t, and growth is taken to be the log change in average wages from year

t to year t + 10.

Table 3: Estimates for Local Wage Growth By Start-Up Percentage

Dependent Variable: Log Wage Change × 100

Commuting Zone Level County Level

10-Year Growth I.A I.B I.C I.D II.A II.B II.C II.D

Startup Fraction 91.41∗∗∗ 104.3∗∗∗ 34.23∗∗∗ 46.31∗∗∗ 55.13∗∗∗ 57.9∗∗∗ 30.39∗∗∗ 32.68∗∗∗

(4.22) (4.32) (4.12) (6.60) (2.60) (2.70) (2.95) (2.76)

Log Employment -1.40∗∗∗ -0.82∗∗∗ -1.16 -1.25∗∗∗ -1.22∗∗∗ -1.17∗

(0.079) (0.081) (1.25) (0.06) (0.06) (0.58)

1-digit Industry Emp. Shares No Yes Yes Yes No Yes Yes Yes
Local FE (CZ or County) No No No Yes No No No Yes
R-squared 0.075 0.114 0.377 0.647 0.029 0.0496 0.203 0.522
Observations 11,000 11,000 11,000 11,000 50,000 50,000 50,000 50,000

Note: This table reports the estimated coefficients from regressing average wage growth at the local level
on the start-up percentage of the location, defined as the fraction of establishments of age 0 and 1. The
sample period is from 1980-2005 for 10-year growth (for example, the observation for 2005 includes 10-year
growth from 2005 to 2015). Average wage at the local level is computed by aggregating total local payroll
and dividing by total employment in the local area. Observation counts have been rounded to accord with
U.S. Census Disclosure rules. *** denotes significant at the 1% level, * denotes significant at the 5% level, *
denotes significant at the 10% level.

54



A.4 Autocorrelation of the Startup Rate

Figure 21: Autocorrelation of Local Startup Rate
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Note: This figure plots estimates of the autocorrelation of the startup rate at the local level at different time
horizons. The startup rate is defined as the fraction of establishments who are of age 0at time t. Autocor-
relation is computed across the panel of commuting zones, using the correlation of all observations of the
startup-rate in time t with the same variable at time t − x, for x = {1, ..., 10}. Data comes from the LBD.
N = {17, 500; 76, 000; 113, 000}, where these counts has been rounded to accord with U.S. Census disclosure
rules.

A.5 Establishment and Firm Growth Rates

Figure 22 reproduces Figure 4 with the population of the county in the year of the establishment’s

birth as the local population. The coefficient βa is restricted to be the same for all ages. The results

are unchanged- establishments do not grow faster in denser areas.

Figure 23 plots the results from reestimating equation (2) allowing βa to vary by age. The confi-

dence intervals include the decreased precision for the estimated growth rates by age (not reported

in Table 4). Overall, it appears that establishments grow slightly faster in denser areas for the first

four years of life, and then slightly slower for the rest of their life. However, for each size classi-

fication considered (small, medium or large counties), the estimated confidence intervals overlap.

When considered over the first 15 years of life, establishments do not grow systematically faster in

denser areas.

In Figure 24 I estimate the same equation with firms as the unit of analysis. Firms can grow

their employment in two ways: intensively within the establishments they own, or extensively

by adding new establishments. I consider only total employment on the LHS of equation (2). Pop-

ulation on the RHS is now population at the time of birth, and in the place of birth, for firms who
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Figure 22: Establishment Growth Rates Across Space: County Estimates

0

.05

.1

.15

.2

G
ro

w
th

 R
at

e 
(L

og
 P

oi
nt

s)

0 2 4 6 8 10 12 14
Age (Years)

Small County (10K)
Medium County (100K)
Large County (1M)

Note: This figure plots the estimated growth rates of establishments by age in three different categories of
county population size using the results from Table 4 . 95% confidence intervals in grey. N = 104, 000, 000,
where this count has been rounded to accord with U.S. Census disclosure rules.

Figure 23: Establishment Growth Rates Across Space

(a) CZ-level Estimates
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(b) County-level Estimates
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Note: This figure plots the estimates of growth by age at the establishment level from estimating equation
(2). Panel (a) contains estimates for commuting zones, and Panel (b) for counties. Growth profiles are given
for three different area sizes in each case. N = 104, 000, 00, where this count has been rounded to accord
with U.S. Census disclosure rules.
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Table 4: Estimates for Establishment Growth Rate Differences By Density

Dependent Variable: Log Employment Change × 100

Commuting Zone Population County Population

I.A I.B I.C II.A II.B II.C

Log Population 0.00931 -0.00659
(0.02042) (0.02046)

Log Population × Age = 1 0.48∗∗∗ 0.4884∗∗∗ 0.561∗∗∗ 0.578∗∗∗

(0.068) (0.062) (0.101) (0.095)

Log Population × Age = 2 0.262∗∗∗ 0.271∗∗∗ 0.244∗∗∗ 0.262∗∗∗

(0.043) (0.036) (0.055) (0.048)

Log Population × Age = 3 0.103∗∗∗ 0.112∗∗∗ 0.075∗∗∗ 0.093∗∗∗

(0.029) (0.022) (0.030) 0.024)

Log Population × Age = 4 0.057∗∗ 0.067∗∗∗ 0.023 0.041∗∗

(0.026) (0.019) (0.025) (0.019)

Log Population × Age = 5 -0.018 -0.008 -0.044∗∗∗ -0.026
(0.024) (0.018) (0.022) (0.017)

Log Population × Age = 6 -0.064∗∗∗ -0.054∗∗∗ -0.095∗∗∗ -0.077∗∗∗

(0.018) (0.016) (0.015) (0.016)

Log Population × Age = 7 -0.115∗∗∗ -0.105∗∗∗ -0.140∗∗∗ -0.122∗∗∗

(0.021) (0.016) (0.016) (0.016)

Log Population × Age = 8 -0.147∗∗∗ -0.137∗∗∗ -0.164∗∗∗ -0.146∗∗∗

(0.022) (0.019) (0.020) (0.020)

Log Population × Age = 9 -0.188∗∗∗ -0.178∗∗∗ -0.186∗∗∗ -0.168∗∗∗

(0.019) (0.021) (0.020) (0.025)

Log Population × Age = 10 -0.142∗∗∗ -0.132∗∗∗ -0.154∗∗∗ -0.135∗∗∗

(0.023) (0.019) (0.019) (0.017)

Log Population × Age = 11 -0.194∗∗∗ -0.184∗∗∗ -0.196∗∗∗ -0.178∗∗∗

(0.019) (0.018) (0.017) (0.019)

Log Population × Age = 12 -0.139∗∗∗ -0.129∗∗∗ -0.164∗∗∗ -0.146∗∗∗

(0.024) (0.019) (0.019) (0.017)

Log Population × Age = 13 -0.095∗∗∗ -0.085∗∗∗ -0.140∗∗∗ -0.140∗∗∗

(0.020) (0.020) (0.017) (0.022)

Log Population × Age = 14 -0.110∗∗∗ -0.100∗∗∗ -0.138∗∗∗ -0.120∗∗∗

(0.024) (0.021) (0.017) (0.019)

Log Population × Age = 15 -0.100∗∗∗ -0.090∗∗∗ -0.115∗∗∗ -0.098∗∗∗

(0.024) (0.026) (0.023) (0.028)

4-digit NAICS Industry FE Yes Yes Yes Yes Yes Yes
State FE Yes No Yes Yes No Yes
R-squared 0.009 0.009 0.009 0.009 0.009 0.009
Observations 104,000,000 104,000,000 104,000,000 104,000,000 104,000,000 104,000,000

Note: This table reports the results from estimating equation (2) at the establishment level on data from
the LBD, for both county and commuting zone populations. Column A the density coefficients to be equal
across establishment age. N = {104, 000, 000}, where these counts have been rounded to accord with U.S.
Census disclosure rules.
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begin as single-establishment firms of age zero. Age of the firm is defined as the age of the oldest

establishment the firm owns.

Defining the birthplace of the firms that begin with a single establishment is complicated the pro-

cess by which firm ID’s are assigned in the the LBD. As discussed in Ding et al. (2019), firm ID’s

break by construction when firms grow or shrink in a particular way. In particular, when a single-

establishment (SU) firm becomes/joins a multi-establishment (MU) firm, it is assigned a new firm

ID. Likewise, if an existing MU firm loses all but one establishment, its firm ID will also change.

To account for this, I modify the LBD firm ID’s according to the following rules:

a) If two or more SU establishments join an MU firm at t, the oldest establishment receives the

MU firm ID since its birth. All other establishments keep their SU IDs until the year they

join the MU firm.

b) In rule (a), if two or more establishments have the same maximum age at t, then the largest

establishment receives the MU firm ID since its birth. All other establishments keep their SU

IDs until the year they join the MU firm.

c) In rule (b), if two or more establishments have the same maximum size at t,then the firm is

flagged as not possessing a birthplace, and dropped from the sample

d) In rule (a), if a younger establishment is 5 times larger in terms of total employees than the

oldest establishment, then this largest establishment receives the MU ID since birth. All

other establishments keep their SU IDs until the year they join the MU firm.

e) If a MU firm changes its MU firm ID at t, but possesses the same establishments in year t
and t − 1, then that new firm ID is replaced everywhere it appears by the original firm ID.

These rules allow the MU firm to be connected to a physical birthplace. Alternative algorithms for

modifying the firm ID’s are also available, developed in particular by Dent et al. (2018), and used

for the first time by Pugsley et al. (2018). These rules focus on more comprehensive procedures for

accounting for mergers and acquisitions at the firm level. In future research, I plan to explore the

robustness of the conclusions of this section to using these alternative firm ID’s.

As can be see in Figure 24, the conclusion for establishments holds true for firms as well. Firms

born in denser areas do not grow their employment faster conditional on survival in a systematic

way over the lifecycle.

A.6 Scale Elasticities

It is well known that establishments in denser areas are larger, pay higher wages and have higher

sales even controlling for detailed industry differences (see e.g. Combes et al. (2012)). Fact 3c
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Figure 24: Firm Growth Rates By Place of Birth

(a) CZ-level Estimates
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(b) County-level Estimates
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Note: This figure plots the estimates of growth by age at the firm level from estimating equation (2). Panel
(a) contains estimates for commuting zones, and Panel (b) for counties. Growth profiles are given for three
different area sizes in each case. N = 76, 000, 00, where this count has been rounded to accord with U.S.
Census disclosure rules.

shows that these differences are constant with age. To establish this fact, I obtain the density

elasticity of establishment scale by age through a full set of non-parametric dummies by age and

detailed industry controls. In particular, I estimate the following series of equations:

yit =
A

∑
a=0

γaIAgeit=a +
A

∑
a=0

βaIAgeit=a × log(Popi) + Indi + µt + X ′
itδ + ϵit(25)

Here yit is log employment of the establishment, log average wages, and log sales per worker. The

right hand side variables are as in equation (2). While equation (2) measures growth, equation

(25)measures how scale evolves with age.

Our interest is again in the coefficients βa, which describes how the elasticities of establishment

scale variables with respect to local population evolve as the establishment ages. These are plotted

for the full sample in Figure 25 for the three outcome variables, at both the commuting zone and

county level. Confirming earlier studies, in the LBD establishments tend to be larger, pay higher

wages and have higher sales per worker in more populous areas. However, in all three cases, these

elasticities are approximately constant over the lifetime of an establishment. As such, not only are

establishments in more populous areas not growing their employment faster (as outlined in Fact

3a), they are not seeing faster growth in payroll or sales.

The result for average wages is already known in the urban literature, and was first documented

by Faberman and Freedman (2016). I extend that result to a holistic analysis of the evolution of

establishment scale by density. Together, these facts suggest that the post-entry life-cycle of an

establishment does not differ in densely populated areas in an appreciable way.
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Figure 25: Scale Elasticities by Age

(a) Commuting Zone Level
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(b) County Level
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Note: This figure plots the density coefficients by age from estimating Equation (25), at the commuting
zone level (Panel (a)) and the county level (Panel (b)). Sales Per-Worker is reported for single-establishment
firms; results using all establishments are quantitatively very similar. 95% confidence intervals in grey. N =
{125, 000, 000; 125, 000, 000; 47, 000, 000} for Employment, Average Wage and Sales Per Worker respectively,
where these counts have been rounded to accord with U.S. Census disclosure rules.

While both equation (2) and equation (25) control for mean differences in industry growth rates

and industry scale, they do not do so by age. As a final check, I estimate scale elasticities for

individual industry groups, rerunning equation (25) separately for each group. The output is

given in Figure 26. The headline conclusion continues to hold: establishment scale evolves in

parallel across areas of different density over the lifecycle.

Constructing the scale elasticity for sales per-worker involves some work to determine establish-

ment level sales, which is not a variable which appears in the current release (though there are

plans to make this variable available to approved researchers). Instead, a measure of revenue

in the Business Register is available for most firms that appear in the LBD from the year 1992 on-

wards. I follow the matching process of Moreira (2015) to match these revenues to the Longitudinal

Business Database.

For single-establishment firms, the match is straightforward. Revenue can be matched on the

basis of Employer Identification Number. Following this procedure results in a revenue variable

for 86% of firms. Considering sales-per worker for multi-unit establishments is complicated by the

fact sales are only observed at the firm level, and based on administrative tax records. The vast

majority of firms in the Business Register consist of only a single establishment, and I report the

results for only a single establishment firm first.

However, multi-establishment firms account for large fractions of output and employment, and

so an attempt is also made to include these in the analysis. I consider two primary methods of

apportioning sales across multi-establishment firms. First, I assign sales to each establishment in

proportion to the employment of each establishment. Second, I assign them in proportion to the
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Figure 26: Employment Scale Elasticities by Age: Industries
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Note: This figure plots the density coefficients by age from estimating Equation (25) separately for major
groupings of two digit NAICS codes, using the Fort and Klimek (2018) concordance to map NAICS codes to
SIC codes. Skilled Tradable Services are NAICS 51-55, and include Finance, Information and Management
of Companies, as defined in Eckert et al. (2019). Trade and Transportation is composed of NAICS 42-29,
and includes Retail, Wholesale and Transportation and Warehousing. Arts and Hospitality is composed of
NAICS 71 and 72, while Education and Medical is Sectors 61 and 62. Manufacturing is composed of NAICS
31-33.Estimation is done at the commuting zone level.

wage bill of the establishment. Results are virtually identical under both specifications.

In Figure 26 I repeat the estimation of scale elasticities at the establishment level for five major

sectoral groupings: Skilled Tradable Services, Arts and Hospitality, Trade and Transport, Educa-

tion and Medical, and Manufacturing. The estimation uses the population at the commuting zone

level. An enumeration of the NAICS codes corresponding to each one of these groupings is found

in the footnotes of Figure 26.

No systematic pattern of how the scale elasticities evolve with age is observable. A slight increase

with age is seen for the Arts and Hospitality and Trade and Transport, while decreases are seen for

Education and Medical and Manufacturing. These more detailed estimates give scant reason to

change the overall conclusions of Fact 3. While establishments start out larger in more populous

areas across industries, they do not appear to grow systematically faster, or see their scales increase

more rapidly in these areas.

A.7 Commuting Zone and County Partition Summary Statistics

In Table 5 I report summary statistics for the partition of the set of commuting zones and counties

employed throughout the paper. This partition splits the geographic units into 10 groups, with

approximately 10% of the U.S. population in each group. The split is done using populations in
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Table 5: Commuting Zone and County Partitions Summary Statistics

Commuting Zone County

Decile Count Mean Population Example Count Mean Population Example

1 435 64,519 Jackson, WY 1,898 14,818 Peach County, GA

2 115 242,717 Burlington, VT 565 49,750 Columbia County, PA

3 59 475,226 Savannah, GA 281 100,238 Napa County, CA

4 36 768,921 Ann Arbor, MI 159 176,522 Arlington County, DC

5 23 1,254,128 Salt Lake City, UT 92 303,893 Pulaski County, AR

6 16 1,755,426 Columbus, OH 57 491,407 Seminole County, FL

7 10 2,600,746 Denver, CO 39 720,857 Baltimore County, MD

8 7 3,770,746 Phoenix, AZ 27 1,040,510 Palm Beach County, FL

9 5 4,905,792 Houston, TX 16 1,705,231 Riverside County, CA

10 3 11,953,495 New York, NY 7 4,213,464 Cook County, IL

Note: This table reports summary statistics of the commuting zone and county partitions into ten deciles
employed throughout the paper. These deciles are employed in Figure 6 for establishment size by age, and
Figure 5 for establishment exit rates. County population data is taken from the U.S Census in 2000. Aggre-
gation from county to commuting zone level is done by the author using the commuting zones defined by
the Census Bureau for the year 2000.

the year 2000, which is approximately the midpoint of the data from the LBD employed in this

study.

A.8 Establishment Survival Function Estimation

In this Section I report the survival function estimates corresponding to the exit rates in Figure

5. These employ the non-parametric Kaplan-Meier estimator. Establishments in the LBD are split

into ten groups according to the size of the commuting zone or county in which they were born.

I use the same ten groups as in Figure 6 and Table 5. I estimate the survival functions for all

establishments born in the period from 1980 to 1995, and use data from 1980 to 2015 on their

lifetime outcomes. Exit occurs when the establishment is flagged as an establishment death in the

LBD. There is some truncation given that not all such establishments born between 1980 and 1995

have exited by 2015. The Kaplan-Meier estimator handles this truncation naturally. The results are

shown in Figure 27.

Differences in exit rates between densely and sparsely populated areas are quite negligible. We

can see in Panel (a) that exit rates are marginally higher at the start of life in large places. This is

somewhat more pronounced than the results for counties in Panel (b). These differences lead to a
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Figure 27: Survival Function Estimates

(a) Establishment Exit Rates by CZ Size
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(b) Establishment Survival Function by CZ Size
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Note: This figure plots the estimated Kaplan-Meier survival functions for all establishments born between
1980 and 1995, across ten deciles of commuting zone or county size in which the establishment was born.
N = 125, 000, 000, where this count has been rounded to accord with U.S. Census disclosure rules. Panels (a)
plots the increments (exit rates) and Panel (b) presents the survival functions. Deciles of commuting zone
and county sizes are labelled in ascending order ( 1st being the smallest), and correspond to the groupings
summarized in Table 5.

small dispersion in estimated exit probabilities over the first 35 years of life: an establishment in

the least dense group of commuting zones has around a 2% higher chance of survival than one

more in the most populous group.

In the main text in Figure 5, the three groupings used correspond to Decile 2 (100k population),

Decile 5 (1M population) and Decile 10 (10M population).

A.9 Local Employment Growth Contributions

In this section I decompose employment growth at the local level into two separate parts: a contri-

bution from population growth, and another contribution from changing employment-population

ratios. Between any two periods, we can write the log of employment growth as

(26) log(
Et

Et−1
) = log(

Et

Pt
)− log(

Et−1

Pt−1
)︸ ︷︷ ︸

EPOP Ratio Growth

+ log(
Pt

Pt−1
)︸ ︷︷ ︸

Population Growth

where Et is the total private employment at the commuting zone level, and Pt is total adult popu-

lation at the commuting zone level. Employment comes from the QCEW at the county level, and

total adult population at the county level comes from the U.S. Census. I aggregate these to the

commuting zone level.
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Figure 28: Decomposition of Commuting Zone Employment Growth 1975-2015

(a) Relative Contributions to Employment Growth
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(b) Total Log Changes in Employment
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Note: Figure (a) shows the relative contributions to employment growth at the commuting zone level since
1975 of population growth and changes in the EPOP ratio, averaged across four groups of commuting
zones depending on their manufacturing share of employment in 1975. These contributions are as defined
in equation (26). Relative contributions are computed by dividing each term on the right-hand side of (26)
by the total log change in employment since 1975. Figure (b) shows the total contribution both components
of the right-hand side of (26). Data on population uses the U.S. Census population estimates at the county-
level, which I aggregate to the commuting zone level using commuting zone boundaries in the year 2000.
Data on employment and manufacturing specialization comes from the Quarterly Census of Employment
and Wages produced by the Bureau of Labor Statistics, and employs the SIC implementation of industry
classification.
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I then average these contributions at the commuting zone level into four categories depending

on the manufacturing share of employment in 1975. These are the same categories presented in

Figure 9. Panel (a) of Figure 28 shows the mean contributions of Population Growth and EPOP

Ratio growth as a fraction of total employment growth, and Panel (b) gives the mean log change

from equation 26 across the four categories of manufacturing specialization.

During this period, the employment-population ratio grew markedly, due in part to the continued

entry of women into the labor force. However, population growth was the largest contributor to

employment growth across all regions, and this did not differ by manufacturing specialization in

1975.

A.10 Structural Estimation First Stage

In this section I present the first stage estimates for the model generated instruments for the num-

bers of manufacturing firms (NM
j,t ) and service firms (NS

j,t). Recall that the moment conditions

exploit variation in changes in these instruments. Figure 29 plots the log-changes in the actual

numbers of firms at the commuting zone level over 5-year periods against the simulated numbers

from the model.

The fit is quite strong, with an R2 of around 0.2 in both cases. Intriguingly, the model-generated

predictions neither under- or over-predict the true changes in numbers of firms on the micro level:

the intercept is close to zero, and the slope is close to 1.

A.11 Structural Model Estimates

In this Section I report the parameter estimates for the structural model. In Table 6 I report the

parameters describing the dynamics of the firm lifecycle, with the estimation as discussed in Sec-

tion 4.3. I am able to match the first four moments of the empirical growth rate distribution in the

Longitudinal Business Database exactly.

Table 7 records the structural production estimates: the local scale elasticities and the house price

elasticities. OLS estimates are additionally given for the house price elasticities. Parameters are

rather tightly estimated, where standard errors are computed using the delta method (which is

necessary given the moment conditions in fact provide estimates of (σS − 1)−1 etc.).

In Figure 30 I show the data which pins down the choice of the congestion parameter ζ. I again

aggregate the Quarterly Census of Employment and Wages to the commuting zone level, and use

it to compute average real wage and average establishment size in each commuting zone, for the

years 1980-2015.

I then regress the log of both of these variables on the log of commuting zone employment, obtain-

ing the coefficients β̂w and β̂size. A representative plot from the year 2000 is shown in Figure 30. ζ
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Figure 29: First-Stage Fit of Predicted Changes in Number of Firms Vs. Actual

Note: This figure compares the model-based simulations of changes in manufacturing firms (above) and
services firms (below) at five year time horizons to what actually occurred in the data from 1975 to 2015.
The unit of observation is the commuting zone. Simulated values are generated assuming the economy is in
a steady state in 1975, and then solving for the value of Πt which exactly matches the series for the aggregate
labor share in manufacturing.
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Table 6: Structural Parameter Estimates for the Firm Lifecycle

Parameter Description Baseline Value Source/Moment

ϕu Arrival rate of productivity improvement 0.482 Mean employment growth of 0.75%

∆u Improvement step size 0.054 S.D in employment growth of 25%

ϕd Arrival rate of productivity deterioration 0.498 Skewness in employment growth -0.05 %

∆d Deterioration step size 0.036 Excess kurtosis in employment growth of 9 %

δ Exogenous death rate of firms 0.1 Average Exit rate of 10%

γ Curvature of utility for local capitalists 1 Set exogenously

ρ Discount rate of local capitalists 0.05 Set exogenously

Note: This table reports the estimated baseline model parameters. Estimation is done via. Simulated
Method of Moments, matching the first four moments of employment growth rates in the LBD, and the
average death rate of establishments.

Table 7: Structural Production Parameter Estimates

Parameter Description Estimate Standard Error First-Stage F Statistic

Production Parameters

σM Scale elasticity of wages for Manufacturing 2.36 (0.4) 642.3

σS Scale elasticity of wages for Services 4.01 (0.95) 789.9

ϵ E.O.S. between Manufacturing and Services 2.43 - -

v House price elasticity 0.92 (OLS=0.52) (0.18) 348.2

Note: This table reports the estimated structural production parameter estimates. Estimation is done via.
exploiting moment conditions based on aggregate structural change shifters. For the house price elasticities,
OLS estimates are reported in brackets. Standard errors for {σS, σM, ϵ} use the delta method, given that
the moment conditions provide estimates and asymptotic standard errors for {(σS − 1)−1, (σM − 1)−1, (ϵ −
1)−1}. Estimation is conducted for commuting zones with at least 50,000 people.
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Figure 30: Cross Section of Average Wages and Average Establishment Size

(a) Average Wages By Area Size

10

20

30

40

 A
v

e
ra

g
e
 W

a
g

e
  

($
’0

0
0

, 
L

o
g

 S
ca

le
)

6 8 10 12 14 16
 Log Employment 

Elasticity=0.080(0.003)

(b) Establishment Size By Area Size
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Note: Figure (a) shows average wage at the commuting zone level for the year 2000. Average wage is com-
puted by dividing total payroll deflated by the U.S. CPI in the commuting zone by total employment. Figure
(b) shows average establishment size at the commuting zone level for the year 2000. Average establishment
size is computed by dividing total employment by the total number of establishments. Data for average
wages is from the County Business Patters, and average establishment size is from the Quarterly Census of
Employment and Wages produced by the Bureau of Labor Statistics.

is solved from equation (17) as the root of

β̂size =
1

1 + ζ

(
ζ − β̂w

)

A.12 Contribution of Firm Creation to Spatial Structural Change

Figure 31 provides the means of cumulative employment growth in each year in the four groupings

of commuting zones considered in Figure 14.
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Figure 31: Contribution of Startups to Spatial Structural Change

(a) Baseline Estimated Model (b) Model without Endogenous Investment

Note: This figure plots the evolution of employment across commuting zones using the baseline estimated
model under two scenarios. Panel (a) shows the model-implied growth in employment under the path for
manufacturing productivity which matches the estimated decline in manufacturing employment. Panel (b)
shows growth when fixing the number of firms in both manufacturing and services to their baseline values
in 1975. The four color groups correspond to the four groups of 1975 manufacturing shares employed in
Figure 9: blue (less than 20%), light grey (20-30%), dark grey (30-40%) and red (over 40%).
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B. THEORY APPENDIX

B.1 Proof of Lemma 1

Write the discounted value of profits in sequence form as

Vj,t(z) = Et

∫ ∞

t
δe−δ(T−t)

[∫ T

t
e−
∫ s

t rvdv 1
σ
(

Bj,s

wj,s
)σ−1Yj,szsds

]
dT

where the expectation is taken over the stochastic random variable zs (all other variables are known
with perfect foresight). At time s, zs is given by

zs = ztDu
s Dd

s

where (Du
s , Dd

s ) are independent counting processes taking on values on the countable set Υu ×Υd,
where

Υu ≡ {1, ∆u, ∆2
u, ...} Υd ≡ {1, ∆d, ∆2

d, ...}

with joint probability mass function

P(Du
s = Υu

n , Dd
s = Υd

m) =
(ϕus)n

n!
e−ϕus · (ϕds)m

m!
e−ϕds

and similarly for Dd
s , where Yu

n and Yd
m represent the nth and mth elements of Υu and Υd respec-

tively. Hence Du
s Dd

s is independent of zt. Furthermore, each firm is infinitesimal, and the paths for
aggregate variables are taken as given from the point of view of the firm. So we can write

Vj,t(z) = zEt

∫ ∞

t
δe−δ(T−t)

[∫ T

t
e−
∫ s

t rvdv 1
σ
(

Bj,s

wj,s
)σ−1Yj,sDu

s Dd
s ds
]

dT

= νj,tz

Sufficient conditions for finite values. For simplicity we will assume aggregate labor Lt is con-

stant; growing aggregate labor supply can be easily incorporated. First note that Yj,s is bounded

above by σ−1
σ wj,sL, where L is aggregate labor supply, so we can write

Vj,t(z) ≤ LzEt

∫ ∞

t
δe−δ(T−t)

[∫ T

t
e−
∫ s

t rvdv 1
σ
(Bj,s)

σ−1wσ
j,sDu

s Dd
s ds
]

dT

Now supposing the value of the firm is finite, by Fubini we can interchange the integrals to get

= Lz
∫ ∞

t
δe−δ(T−t)

[∫ T

t
e−
∫ s

t rvdv 1
σ
(Bj,s)

σ−1wσ
j,sLsEt[Du

s Dd
s ]ds

]
dT

= Lz
∫ ∞

t
δe−δ(T−t)

[∫ T

t
e−
∫ s

t rvdv 1
σ
(Bj,s)

σ−1wσ
j,sLse(ϕu(∆u−1)+ϕd(∆d−1))s]ds

]
dT

= Lz
∫ ∞

t
δe−δ(T−t)

[∫ T

t
e−γ

∫ s
t gvdve−ρs 1

σ
(Bj,s)

σ−1wσ
j,se

(ϕu(∆u−1)+ϕd(∆d−1))s]ds
]

dT
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using the Euler equation of the local capitalist. Now we impose some simple assumptions on

location fundamentals. Suppose that:

a) There exist numbers K1 and k such that

max
j
{Bj,s} ≤ K1eks

for all s.

b) There exists some K2 such that

max
j,k

{
Bj,s

Bk,s
} < K2

for all s.

c) Bj,s > Fs for some weakly increasing surjection Fs : R+ → R+

Together, (b) and (c) can be shown to imply lim
s→∞

e−γ
∫ s

t gvdv = 1. Moreover, using (a) we have

Vj,t(z) ≤ Lz
∫ ∞

t
δe−δ(T−t)

[∫ T

t
e−γ

∫ s
t gvdve−ρs 1

σ
(K1eks)σ−1(Nj,tZ̄j,t)

σ
σ−1 e(ϕu(∆u−1)+ϕd(∆d−1))s]ds

]
dT

If Nj,t is not vanishing in the limit (which can be shown to be implied by conditions (a)-(c)), then Z̄j,t

is bounded from above. Moreover, Nj,t cannot grow faster than Bj,s in the limit without violating

feasibility. As such, there is some K3 such that

Vj,t(z) ≤ K3Lz
∫ ∞

t
δe−δ(T−t)

[∫ T

t
e−γ

∫ s
t gvdve−ρs 1

σ
(eks)σ−1+ σ

σ−1 e(ϕu(∆u−1)+ϕd(∆d−1))s]ds
]

dT

Then it can be directly verified this integral is finite if

δ + ρ > ∑
i∈u,d

ϕi(∆i − 1) + k(σ − 1 +
σ

σ − 1
)

In words, the value of the firm will be finite if the sum of the discount and death rates is larger

than the average growth rate of firm efficiency and a multiple of the maximum growth in local

productivity.

B.2 Proof of Proposition 2

In a stationary equilibrium, the mass of firms is constant, which requires Ne
j,t/Nj,t = δ for all

locations. Given that both the mass of firms and the entry rate are constant, the consumption of
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local capitalists is also constant, which requires rj,t = ρ. Lastly, average efficiency Z̄j,t is constant

in each location. Using the law of motion in (14), this implies that Z̄j,t is the same across areas, and

given by

Z̄j,t =
δ

Φ
z̄E

Combining this with the results of Proposition 1, we get an expression for payroll across areas,

which satisfies
wj,tLj,t

N1+ζ
j,t

= δζ(ρ − Φ)(σ − 1)τz̄E−1

Substituting both of these expression into equation (27), we can write

(27) wj,t = k1B
(1+ζ)(σ−1)

(1+ζ)(σ−1)−1
j,t (Lj,t)

1
(1+ζ)(σ−1)−1

where k1 is combination of model constants. Utility maximization among workers must imply that

L
v̄j
j,t = w

1−v̄j
j,t Aj,th̄

v̄j
j Ū−1

for all locations, where Ū is the equilibrium level of utility in the stationary economy. Combining

this with(27) and dropping time subscripts, we find that Lj is pinned down as a function of the

realizations of location fundamentals, in

(28) (Lj)
v̄j

1−v̄j
− 1

(1+ζ)(σ−1)−1 = A
1

v̄−1
j h

v̄
v̄−1
j

Ū
1

v̄−1

k1
B

(1+ζ)(σ−1)
(1+ζ)(σ−1)−1
j

Suppose that v̄j
1−v̄j

> 1
(1+ζ)(σ−1)−1 . Then we can use this expression to write

L
v̄j−

1−v̄j
(1+ζ)(σ−1)−1

j

L
v̄k−

1−v̄k
(1+ζ)(σ−1)−1

k

=
(k1B

(1+ζ)(σ−1)
(1+ζ)(σ−1)−1
j )1−v̄j Ajh̄

v̄j
j

(k1B
(1+ζ)(σ−1)

(1+ζ)(σ−1)−1
j )1−v̄k Ak h̄v̄k

k

and together with the labor market clearing conditioning, this equation pins down unique values

for Lj as a function of all location fundamentals. This is the unique stationary equilibrium. In this

equilibrium, using (27) the conditional log wage function at time 0 in the steady state (before long

run fundamentals are realized) is

E[log(wj)|log(Lj)] =log(k1) +
1

(1 + ζ)(σ − 1)− 1
log(Lj) +

(1 + ζ)(σ − 1)
(1 + ζ)(σ − 1)− 1

E[log(Bj)|log(Lj)]

For average firm size, recall we have
wj,tLj,t

N1+ζ
j,t

= λ
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using equation (15). As such we can can write

(1 + ζ)log(Lj,t/Nj,t) ∝ ζlog(Lj,t)− log(wj,t)

from which the result follows immediately.

If v̄j
1−v̄j

≤ 1
(1+ζ)(σ−1)−1 , it can be shown that utility does not equalize across areas, such that equation

(28) does not hold, and in equilibrium only a single location will be inhabited.

Proof of Lemma 2. To derive the conditional expectation of log(Bj,t) given employment in a lo-

cation, under the assumptions in Lemma 2, we make the following observations. Note that the

vector [
log(Lj)

log(Bj)

]
= c

 log( Ū
1

v̄−1

k1
)

0


︸ ︷︷ ︸

≡b

+c

[
1

v̄−1
v̄

v̄−1 σ̃

0 0 1

]
︸ ︷︷ ︸

≡Γ

 log(Aj)

log(hj)

log(Bj)



where c ≡ (
v̄j

1−v̄j
− 1

(1+ζ)(σ−1)−1 )
−1and σ̃ ≡ (1+ζ)(σ−1)

(1+ζ)(σ−1)−1 , is an affine transformation of a multivari-

ate normal, and is thus itself multivariate normal, such that[
log(Lj)

log(Bj)

]
∼ N (b + Γµ, ΓΣΓ

′
).

Then the conditional expectation of log(Bj) takes a simple form, and is given by

E[log(Bj,t)|log(Lj,t)] =µB + ΓΣΓ
′
21ΓΣΓ

′−1
11 (log(Lj,t)− clog(

Ū
1

v̄−1

k1
)

− c(
1

v̄ − 1
µA +

v̄
v̄ − 1

µh + σ̃µB))

Some algebra reveals that, in the case that hj is constant across space,

d
log(Lj,t)

E[log(Bj,t)|log(Lj,t)] =
1

1−v̄ ΣBA + σ̃2Σ2
B

( 1
v̄−1 )

2Σ2
A + σ̃

v̄−1 ΣBA + σ̃2Σ2
B

Linearized Dynamics. Before examining the full case use to prove local stability, I derive the

expressions presented in Section (3.2). First, assume that there are no post-entry dynamics, so that

Z̄j,t is always constant at the mean entry productivity z̄E. Also, under risk neutrality of the local

capitalist, we have rj,t = ρ. To examine the local dynamics around the unique steady state, we

combine equation (10) and (13) to get

(NE
j,t)

ζ =
z̄E A

1
v̄j B

1−v̄j
v̄j

j h

στ
N

1
v̄j(σ−1)−1

j,t Z̄
1

v̄j(σ−1)−1

j,t
1

ρ − ζgne

j,t − Φ
Ut
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where Ut is the equilibrium level of utility in the economy which ensures labor market clearing

across space.In the text we suppose only one location is out of steady state, and that this location

is small, such that we Ut is close to its steady state value of Ū. Linearizing this expression around

the unique steady state yields

ζ(NE
j,t − N̄E

j ) = δ(
1
v̄j

1
σ − 1

− 1)(Nj,t − N̄j) +
ζ

ρ − Φ
(ṄE

j,t − ˙̄NE
j )

where N̄j , for example, denotes the steady state number of firms in that location. Noting that

Ṅj,t = NE
j,t − δNj,t, we can write this as a second order, homogenous linear differential equation in

Nj,t, as
ζ

(ρ + δ)
(N̈j,t − ¨̄Nj)−

ζρ

ρ + δ
(Ṅj,t − ˙̄Nj) + δ(

1
v̄j(σ − 1)

− 1 − ζ)(Nj,t − N̄j) = 0

The solution is given by

Nj,t = (Nj,0 − N̄j)ext + N̄j

x = 0.5(ρ ±
√

ρ2 + 4δ
(ρ + δ)

ζ
(1 + ζ − 1

v̄j(σ − 1)
)

Given that
(

1
v̄j(σ−1) − 1 − ζ

)
< 1, the solution for Nj,t has one stable and one unstable root. Stan-

dards arguments imply that the explosive solution will violate the transversality condition of the

local capitalist. As such, the solution for this special case has

Nj,t = (Nj,0 − N̄j)ext + N̄j

x = 0.5(ρ −
√

ρ2 + 4δ
(ρ + δ)

ζ
(1 + ζ − 1

v̄j(σ − 1)
)

Now we consider the full case with CRRA utility of the capitalist. From market clearing in the final

good, the consumption of the capitalist in location j must satisfy

Cj,t =
1
σ

Bt(NtZ̄t)
1

σ−1 Lt − τ(NE
j,t)

ζ

where the right hand side is dividends net of entry costs. The linearized Euler equation of the

capitalist requires

Ċt = C̄
1
γ
(rj,t − ρ̄)

Inserting this into the free entry condition gives us

(NE
j,t)

ζ =
z̄E A

1
v̄j B

1−v̄j
v̄j

j h

στ
N

1
v̄j(σ−1)−1

j,t Z̄
1

v̄j(σ−1)−1

j,t
1

γ
Ċj,t

C̄j
+ ρ − ζgne

j,t − Φ
Ut
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I linearize this equation ignoring deviations of Z̄j,t and Ūt from their steady state values, and then

show that doing so is valid for economies sufficiently close to the stationary equilibrium in all

locations. Doing so yields

ζ(NE
j,t − N̄E

j ) = δ(
1
v̄j

1
σ − 1

− 1)(Nj,t − N̄j) +
ζ

(ρ − Φ)
(ṄE

j,t − ˙̄NE
j )

− (
N̄E

j

C̄j
)

γ̄

(ρ − Φ)

(
1
v̄j

1
σ − 1

N̄ζ
j (Ṅj,t − N̄j)− τ(NE

j )
ζ−1(ṄE

j,t − Nj,t)

)
(29)

Unlike in the simple case above, the solution to this equation now depends on location, and quan-

tities such as the steady state entry flow N̄ζ
j . However, it can be verified that in all locations, the

solution to equation (29) Nj,t has one stable and one unstable root.
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