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Abstract

I show that if there are diminishing returns to research, long-run economic outcomes are un-

affected by short-run fluctuations. Theories that feature hysteresis imply counterfactual scale

effects. As such, the study of business cycles and long-run economic growth can be divorced.
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1. INTRODUCTION

Sustained economic growth is widely held to arise from the accumulation of knowledge. Part of

this knowledge is developed by individuals in search of profits. Since profits are impacted by the

business cycle, a natural question is whether downturns can have permanent effects on the level

of output (otherwise known as hysteresis) via temporary reductions in innovative effort.

Take, for example, the procyclicality of measured R&D. Incumbent firms tend to concentrate their

innovative efforts in booms, and cut back sharply in downturns.1 Though the same is true for

capital investment, innovative activity has effects not found in classical business cycle theory.

Knowledge is a unique production input, in that it is able to be used by others without loss to

the inventor (Romer, 1990). That includes future researchers; knowledge won today can spill over

through time, benefitting future innovation. Once one grants this premise, it is easy to imagine

that a lack of innovation today could lower income in all future periods, even if the growth rate

returns to normal after a downturn.

Many papers examining this possibility appear in the literature. Barlevy (2004) presents a growth

model in which stabilizing temporary fluctuations can have permanent effects on the level of in-

come, and uses it to revisit the costs of business cycles. Comin and Gertler (2006) show how

high-frequency volatility can propagate onto medium and long-run economic dynamics through

its effect on innovation and technology adoption. Benigno and Fornaro (2018) study the possibility

of Keynesian “stagnation traps”, where a period of low demand lowers the incentive for innova-

tion, and weak growth depresses demand, permanently scarring output. Jordà et al. (2020) revisit

the long-run neutrality of money, and overturn this result by including innovation and hysteresis

in an otherwise standard New Keynesian model.2

I show in this paper that when there are diminishing returns to research, long-run levels of income

are unaffected by short-run fluctuations. By diminishing returns, I mean that continued expansion

of research effort in the aggregate is needed to keep delivering the same proportional growth in

aggregate productivity. Evidence for diminishing returns is strong. Bloom et al. (Forthcoming)

show that across domains as varied as transistors, agricultural yields and the invention of new

drugs, increasing numbers of researchers have been needed to sustain proportional growth. At

the macro level, a large rise in resources devoted to innovation in the 20th Century delivered

approximately constant aggregate TFP growth (Jones, 1995b).

1See, for example, Ouyang (2011) and Argente et al. (2018). Several reasons for this behaviour have been proposed.
Barlevy (2007) considers the role of business-stealing in innovation, which causes firms to concentrate their investments
in booms when short-run profits are highest. Counter-cyclical credit constraints also seem to play a role (Aghion et al.,
2012).

2Related papers exploring this idea include King and Rebelo (1988), Stadler (1990), Fatas (2000), Canton (2002),
Aghion et al. (2010), Kung and Schmid (2015), Moran and Queralto (2018), Garga and Singh (2018), Queralto (2019),
Bianchi et al. (2019) and Anzoategui et al. (2019). I discuss some of these in more detail in Section 3.
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The reason for the disconnect between long-run income and short-run fluctuations is simple. In

a world of linear returns to research, the productivity of an innovator in achieving a proportional

increase to the knowledge stock is independent of the level of knowledge. If a downturn causes a

dip in her research effort, that research time is lost forever, and output is permanently lower than it

would have been. This same linearity is also what produces scale effects in growth models: more

researchers means more ideas discovered, at all points in time.

If instead there are diminishing returns to research, long-run progress requires a growing numbers

of researchers. If the potential population of researchers continues growing during a downturn,

lost research time can be made up afterwards. In the long run, income is proportional only to the

level of population, leaving no room for past fluctuations to matter.

I then show that papers who escape this conclusion rely on linearity in returns to research, in one

way or another. In effect, they assume that a fixed amount of scare resources (such as labour for

innovation) can produce perpetual growth in output. As a result, they imply strong scale effects,

wherein increasing the population of innovators will raise the long-run growth rate. The post-war

evidence of industrialized nations speaks strongly against the existence of such scale effects.

Finally, a word about what this paper is not about. I do not address hysteresis arising from a de-

pressed labour market. Discussed in DeLong et al. (2012) and elsewhere, this could arise from skills

atrophying during prolonged periods of unemployment, from information frictions or through

psychological mechanisms. While such effects could be very persistent, they are not truly perma-

nent in that workers are finitely lived, and are eventually replaced by younger cohorts with no

memory of earlier downturns.

2. SHORT-RUN FLUCTUATIONS AND LONG-RUN GROWTH

The basic environment is simple. There is a representative consumer with intertemporal prefer-

ences over per-capita consumption ct of a homogenous final good given by

U = E
∞

∑
t=0

βtLt
c1−θ

t
1− θ

.

The agent has an endowment of labour Lt that is growing by a proportional factor (1 + η) in each

period, where η ≥ 0.

The economy admits an aggregate production function for the final good of

Qt = Bt AtLP
t .

Here At is the stock of knowledge, LP
t is labour used for production, and Bt is a stochastic uti-
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lization factor that follows a Markov process. This production function is more general than it

appears; a large class of models with different microfoundations can be shown to admit such an

aggregate structure, some of which I explore in Section 3. The omission of physical capital from

the function may strike some as odd, but its inclusion in this section changes nothing fundamental,

while complicating the exposition.

Increasing At requires using labour for research, so that

At+1 − At = χAγ
t LR

t , (1)

where γ ≤ 1, χ is a scale parameter and LR
t is the amount of labour employed for research.

To begin with, I show how hysteresis may arise. Suppose that γ = 1, so that a proportional increase

in knowledge today leads to a proportional increase in the productivity of research labour in the

future. Under this restriction, we must have population growth η = 0, or the agent will be able to

achieve unbounded utility. This restriction, while perhaps seeming a technicality, is at the heart of

the issue. With linear returns to research, the growth rate of knowledge in (1) will depend only on

the total amount of researchers employed at any time.

The problem of the agent is, recursively,

V(A, B) = max
R∈[0,1]

(BA(1− R))1−θ

1− θ
+ βEB′|B[V((1 + χRL)A, B′)],

where R denotes the fraction of aggregate labour engaged in research. It is easy to verify that this

problem admits a solution of the form V = b(B)A1−θ

1−θ , where b(B) is a function that solves

b(B)/(1− θ) = max
R∈[0,1]

[
(B(1− R))1−θ + (1 + χRL)1−θ βEB′|B[b(B)]

]
/(1− θ).

Moreover, optimal innovative effort Rt will solve

(1 + χRtL)θ

(1− Rt)θ
= Bθ−1

t EBt+1|Bt [b(Bt+1)]βχL. (2)

The effect of fluctuations on innovation is easiest to see if we assume that Bt is i.i.d. In that case,

Rt depends only on the current realization of Bt. With θ > 1, innovative effort is lower when

utilization Bt is lower. This reflects the fact that, even though the opportunity cost of doing research

is lower with low Bt , sufficient curvature in utility means the agent partially offsets declines in

current consumption through reduced innovative effort. The opposite occurs when θ < 1.

This also means that research effort Rt tracks the process for Bt, and the growth rate of the economy

will show no tendency to compensate for past slowdowns. An illustrative example is presented in
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FIGURE 1: Hysteresis with Linear Returns To Knowledge
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Notes: The Figure shows a stylized example of hysteresis occurring under linear returns to research, and i.i.d shocks to Bt. A sequence
of bad shocks to utilization occurs when the black and blue lines diverge at τ. The red line shows the expected future output path at
τ + T, which is persistently below that expected at τ.

Figure 1. At time τ, the economy experiences a sequence of bad shocks to Bt, which directly lowers

output, as well as slowing research effort. By time τ + T, the expected growth path is permanently

lower than that which would have been predicted at time τ, while expected growth rates and

utilization are identical from then on. The expected knowledge stock at time t is

Et[At+T] = AtEt

T

∏
s=1

(1 + αRsL),

and with Bt i.i.d this reduces to

Et[At+T] = At(1 + αR̄L)T, (3)

where R̄ is obtained from integrating the solution to (2) for Rt over the distribution of Bt. The

expected knowledge stock at a future date is proportional to the level today. If At grows more

slowly due to a shock to current Bt, the far future is permanently affected.3 In other words, output

is not trend stationary.

Under diminishing returns to research, this cannot happen. The economy completely recovers

after bad (or good) shocks, and returns to a unique, long-run trend path. Suppose that γ < 1, and

that η > 0. Then the percentage change in the stock of knowledge is

At+1 − At

At
= χRt

Lt

A1−γ
t

.

3Of course, the converse is also true, and booms will permanently raise living standards in all future time periods.
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Writing it in this way, we can see that since Rt is bounded above by 1, long-run growth depends

on a continued expansion in population; the diminishing returns to the effort of each researcher

must be offset by continued growth in the number of researchers. This also suggests that the

relevant state variable of the economy is not the amount of knowledge per se, but the ratio of

knowledge to total available labour. I define this ratio to be Gt ≡ At/L
1

1−γ

t , which turns out to

be the appropriate way to detrend aggregate productivity improvement. When this ratio is low,

increasing the fraction of the population engaged in research yields high returns in knowledge

gained, and vice versa.

Using this formulation allows us to rewrite the problem as

V(G, B) = max
R∈[0,1]

(BG(1− R))1−θ

1− θ
+ β̃EV(G′, B′), (4)

subject to

G′ = (1 + η)
1

γ−1 [G + χRtGγ], (5)

where β̃ ≡ β(1 + η)
2−γ−θ

1−γ , and we impose β̃ < 1. The state variable G plays a dual role in this

formulation. It first captures the upwards drift of the population; without any research effort,

Gt will decline at a constant rate. Second, Gt will be high when At is high, yielding increased

possibilities for per-capita consumption relative to trend.

The Euler equation in this problem reads

c̃1−θ
t [1 + χRtGγ−1] = β̃Ec̃1−θ

t+1 (G
γ−1
t (1− Rt)χ), (6)

with c̃t ≡ BtL
− 1

1−γ

t At(1− Rt) being detrended per-capita consumption. Inspecting this equation,

we can see that regardless of the process for Bt, the economy has a unique deterministic steady-

state value for Gt. First note that if Gt is constant at Ḡ, then At is growing at rate (1 + gA) =

(1 + η)
1

1−γ , and χRtḠγ−1 = gA. Using this in (6), we find that

Ḡ = ((1 + 2gA)
−1χβ̃)

1
1−γ .

This unique steady state is the point around which the economy fluctuates. Using standard tech-

niques, it can be shown that the linearised dynamics of (5) and (6) around this steady state have a

unique, non-explosive solution, and that Et[Gt+T] → Ḡ as T grows large.4 This means that in the

long run, productivity At depends only on the level of population Lt, and there is no possibility of

4For the case of log presences with θ → 1, it can be shown that the economy is globally stable around Ḡ. However,
the separability implied by log preferences means that innovation is unaffected by fluctuations in Bt, and is thus not a
terribly interesting case.
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FIGURE 2: Convergence with Diminishing Returns To Knowledge
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Notes: The Figure shows a stylized example of convergence occurring under diminishing returns to research, and i.i.d shocks to Bt. A
sequence of bad shocks to utilization occurs when the black and blue lines diverge at time τ. The red line shows the expected future
output path at τ + T, which converges back to the expected output path at time τ.

hysteresis, in stark contrast to equation (3) above. Figure 2 displays an example.

Indeed, hysteresis can not arise even if temporary fluctuations destroy knowledge itself. We might

imagine that a severe enough recession could destroy firms’ organizational capital and accumu-

lated inventions through waves of bankruptcies. In this case, At itself might fall. However, as long

as the population of potential researchers is unaffected, eventually the economy will return to its

long-run trend.

Why is diminishing returns so different? In effect, when the amount of resources available for

innovation is high relative to the current state of knowledge, investing a greater fraction of these

resources for the future yields a high return. After a downturn, this incentive drags the economy

back to a trend path determined by the expansion of scarce resource availability.

3. HYSTERESIS AND SCALE EFFECTS

Clearly, most papers studying growth and fluctuations are not this simple. Nonetheless, promi-

nent formulations rely on linear returns to research effort to deliver long-run effects of temporary

fluctuations. To show this, I introduce some minimal departures from the framework in Section 2

that nonetheless capture the key ingredients of papers in the literature.5

5Throughout this Section, I focus on the planner’s problem in these economies. None of the conclusions change when
examining the decentralized market equilibria, despite the presence of inefficiencies due to intertemporal spillovers.
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3.1 AK and Lucas Models

Barlevy (2004) employs a classic “AK” model to study fluctuations and growth. The AK model is

perhaps the earliest model of endogenous growth. In this world, production is linear in capital,

and the classic convergent Solow dynamics do not apply; linear returns in the accumulating factor

allows the economy to grow per-capita income forever.

While my discussion above features no capital, its setup is equivalent to an AK model if we sim-

ply relabel the knowledge stock At as capital. Then, following Barlevy, modify the knowledge

accumulation equation according to

At+1 − At = (φ(
It

At
)− δ)At, (7)

where It is the amount of the final good used for investment, and φ is a increasing, concave func-

tion that introduces adjustment frictions. δ is a constant depreciation rate, which allows some

knowledge to be forgotten every period. Letting φ() be the identity function would return us to

the world of Section 2 with γ = 1, with the small change that now the utilization factor Bt also

appears in the accumulation equation.

The linearity in returns to research here is readily apparent. Regardless of the scale of the economy,

or the level of At, investing a constant fraction of output will deliver constant aggregate growth

in income (on average). It can be verified that regardless of the function assumed for φ, hysteresis

may arise. More importantly, just as in Section 2, the level of population Lt always matters for the

equilibrium growth rate.

A related early endogenous growth model is Lucas’ model of human capital accumulation. As is

well known, the Lucas model is isomorphic to an AK model in many respects, and features linear

returns to human capital accumulation at the aggregate level. King and Rebelo (1988) employ a

two-sector Lucas model in an early model of endogenous growth and fluctuations, and note that

“generally, there are permanent effects of temporary shocks”.

3.2 Romer Models

A number of recent papers explicitly model knowledge accumulation through expansion of the

number of ideas, as in the original Romer (1990). Specifically, consider a stripped-down, one sector

version of Comin and Gertler (2006), where

Qt = (
∫ At

0
yt(i)

ε−1
ε di

) ε
ε−1

,
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with ε > 1, such that final output is produced through aggregating intermediate varieties, and the

output of each intermediate good is yt(i) = Btkt(i)αlt(i)1−α. kt(i) and lt(i) are capital and labour

employed to produce intermediate i. By symmetry across goods, it can be shown that the economy

admits an aggregate production function, such that

Qt = A
1

ε−1
t BtKα

t L1−α
t .

Notice that the number of varieties At plays the role of the knowledge stock in this formulation,

and continual growth in these varieties is the key to long-run growth in output. Ignoring their

distinction between inventing a new variety and adopting it for production6, assume that varieties

accumulate according to

At+1 = At(1− δ) + ϕtS
ρ
t , (8)

in which St is the amount of the final good spent on innovation, ρ < 1 and ϕt denotes research

productivity, defined as

ϕt = χ
At

Kρ
t

, (9)

where χ is a parameter. It is readily apparent that the knowledge accumulation equation (8) is

linear in research spillovers (just as in (7) and (1) when γ = 1); the productivity of research invest-

ment St increases linearly in the current stock of knowledge. The role played by the scaling factor

is Kρ
t is less immediately clear. To see its effect, it is helpful to consider a world in which capital can

be used in the same period it is produced, using only the final good. Maximising net output with

respect to capital yields the first order condition Kt = (αA
1

ε−1
t Bt)

1
1−α Lt, and net output becomes

Qt = ᾱ(A
1

ε−1
t Bt)

1
1−α Lt,

with ᾱ = α
α

1−α − α
1

1−α > 0. Now growth in the knowledge stock takes the form

At+1 − At

At
= χ̄(Rt,Q)

ρ − δ,

where Rt,Q is the fraction of output invested in research, and χ̄ = χ(α
α−1
1−α − 1)ρ. Written this way,

we are very close to the world of Section 2. The problem of our agent is

V(A, B) = max
RQ∈[0,1]

(B
1

1−α Aε(1− RQ))
1−θ

1− θ
+ βEB′|B[V((1− δ + χ̄Rρ

Q)A, B′),

with ε ≡ (1− α)−1(1− ε)−1. It can be shown that in this case, the value function again has a closed

6This merely introduces a time delay between innovation and its effect on productivity, and is a way of generating
procyclical propagation of shocks to Bt.
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form solution, and output growth displays hysteresis; the process for output is non-stationary, and

past slowdowns will lower the level of income for all time. In contrast to Section 2, however, the

level of population does not appear in the research choice of the agent, thanks to the introduction

of the scaling factor Kt in (9). Nonetheless, the economy displays a secondary type of scale effect.

Changes in the average fraction of output invested in innovation (thanks, say, to R&D subsidies in

a decentralised equilibrium) will permanently change the average growth rate. This type of scale

effect is also rejected by the evidence of the 20th Century.

Papers which employ a Romer style formulation similar to Comin and Gertler (2006) include

Moran and Queralto (2018), Queralto (2019) and Anzoategui et al. (2019).

3.3 Schumpeterian Models

Schumpeterian models consider innovation occurring on a range of established goods (or indus-

tries), and improvements in knowledge are best thought of as improvements in the quality of ex-

isting ideas. As in Benigno and Fornaro (2018), suppose that output is produced according to

Qt = (BtLt)
1−α

∫ 1

0
At(i)1−αxt(i)αdi,

where At(i) is the quality of good i, and xt(i) is the amount of intermediate i used. Intermediates

can be produced using final output with a unit cost. This economy admits a familiar aggregate

production function, given by

Qt = ᾱBt AtLt,

where At is now the average quality of each good across product lines. In these models, good

quality is modeled as lying on a ladder with a proportional step size γ > 1, such that

At(i) = γnt(i),

and nt(i) is the number of previous successful innovations. Improving a particular product re-

quires investment in research, and is stochastic, with the chance a product improves after investing

It(i) units of the final good given by

µt(i) = min{ It(i)
At(i)

, 1}.

Importantly, innovation on a product becomes less likely the more advanced a product is, and

requires spending larger amounts of the final good. As is standard in the literature, it can be

shown that there is a symmetric solution where µt(i) is constant across goods, so that average
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quality evolves according to

At+1 = (1− µt)At + γµt At,

or equivalently

At+1 − At = γAtBtLR
t ,

where again LR
t is the number of researchers engaged in research activity. The parallel with Section

2 should now be obvious: the knowledge accumulation equation is linear in research spillovers,

and output growth will again be non-stationary, with hysteresis a feature.

The linearity in research spillovers in the aggregate economy of Schumpeterian models arises from

their quality-ladder structure. Each step increases productivity by a fixed proportional factor, and

simultaneously increases the knowledge base for future researchers on that product by the same

factor. Besides Benigno and Fornaro (2018), papers in the literature with a Schumpeterian structure

include Fatas (2000), Aghion et al. (2010) and Bianchi et al. (2019).

4. CONCLUSION

Early business cycle theorists modeled the economy as fluctuating around an exogenous trend

driven by technological progress, reasoning that fluctuations were unlikely to permanently affect

that progress. After three decades of work on the empirics and theory of endogenous growth, that

assumption looks justified.

Of course, the long-run invariance result here says nothing about the length (or pain) of down-

turns, which could be exacerbated in the short-run by innovation slumps. As is known from Jones

(1995a) and Atkeson and Burstein (2019), when γ is close to 1, transitional dynamics can be slow.

Getting a handle on these dynamics in a world of diminishing returns is a key task for future

research.
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